Shaine Chenxin Bao, Dalia Mizikovsky, Kathleen Pishas, Qiongyi Zhao, Karla J Cowley, Evanny Marinovic, Mark Carey, Ian Campbell, Kaylene J Simpson, Dane Cheasley, Nathan Palpant
{"title":"针对高维生物成像数据的鲁棒无监督聚类方法揭示了药物诱导的共同形态特征","authors":"Shaine Chenxin Bao, Dalia Mizikovsky, Kathleen Pishas, Qiongyi Zhao, Karla J Cowley, Evanny Marinovic, Mark Carey, Ian Campbell, Kaylene J Simpson, Dane Cheasley, Nathan Palpant","doi":"10.1101/2024.09.05.611300","DOIUrl":null,"url":null,"abstract":"High-throughput analysis methods have emerged as central technologies to accelerate discovery through scalable generation of large-scale data. Analysis of these datasets remains challenging due to limitations in computational approaches for dimensionality reduction. Here, we present UnTANGLeD, a versatile computational pipeline that prioritises biologically robust and meaningful information to guide actionable strategies from input screening data which we demonstrate using results from image-based drug screening. By providing a robust framework for analysing high dimensional biological data, UnTANGLeD offers a powerful tool for analysis of theoretically any data type from any screening platform.","PeriodicalId":501307,"journal":{"name":"bioRxiv - Bioinformatics","volume":"416 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust unsupervised clustering approach for high-dimensional biological imaging data reveals shared drug-induced morphological signatures\",\"authors\":\"Shaine Chenxin Bao, Dalia Mizikovsky, Kathleen Pishas, Qiongyi Zhao, Karla J Cowley, Evanny Marinovic, Mark Carey, Ian Campbell, Kaylene J Simpson, Dane Cheasley, Nathan Palpant\",\"doi\":\"10.1101/2024.09.05.611300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-throughput analysis methods have emerged as central technologies to accelerate discovery through scalable generation of large-scale data. Analysis of these datasets remains challenging due to limitations in computational approaches for dimensionality reduction. Here, we present UnTANGLeD, a versatile computational pipeline that prioritises biologically robust and meaningful information to guide actionable strategies from input screening data which we demonstrate using results from image-based drug screening. By providing a robust framework for analysing high dimensional biological data, UnTANGLeD offers a powerful tool for analysis of theoretically any data type from any screening platform.\",\"PeriodicalId\":501307,\"journal\":{\"name\":\"bioRxiv - Bioinformatics\",\"volume\":\"416 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.05.611300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.05.611300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A robust unsupervised clustering approach for high-dimensional biological imaging data reveals shared drug-induced morphological signatures
High-throughput analysis methods have emerged as central technologies to accelerate discovery through scalable generation of large-scale data. Analysis of these datasets remains challenging due to limitations in computational approaches for dimensionality reduction. Here, we present UnTANGLeD, a versatile computational pipeline that prioritises biologically robust and meaningful information to guide actionable strategies from input screening data which we demonstrate using results from image-based drug screening. By providing a robust framework for analysing high dimensional biological data, UnTANGLeD offers a powerful tool for analysis of theoretically any data type from any screening platform.