利用 NetID 从元细胞中可扩展地识别特定世系的基因调控网络

Weixu Wang, Yichen Wang, Ruiqi Lyu, Dominic Grün
{"title":"利用 NetID 从元细胞中可扩展地识别特定世系的基因调控网络","authors":"Weixu Wang, Yichen Wang, Ruiqi Lyu, Dominic Grün","doi":"10.1101/2024.09.08.611796","DOIUrl":null,"url":null,"abstract":"The identification of gene regulatory networks (GRN) governing distinct cell fates in multilineage cellular differentiation systems is of critical importance for understanding cell fate decision. Single-cell RNA-sequencing (scRNA-seq) provides a powerful tool for the quantification of gene-level co-variation across the cell state manifold. However, accurate GRN reconstruction is hampered by the sparsity of scRNA-seq data introducing substantial technical noise. Moreover, the high dimensionality of typical scRNA-seq datasets limits the scalability of available approaches. To overcome these challenges, and to facilitate the inference of lineage-specific GRNs with directed regulator-target relations, we introduce NetID. This approach optimizes coverage of the cell state manifold by homogenous metacells and avoids spurious gene-gene correlations observed with available imputation methods. Benchmarking demonstrates superior performance of NetID compared to imputation-based GRN inference. By incorporating cell fate probability information, NetID facilitates prediction of lineage-specific GRNs and recovers known network motifs centered around lineage-determining transcription factors governing bone marrow hematopoiesis, making it a powerful toolkit for deciphering the gene regulatory control of cellular differentiation from large-scale single-cell transcriptome data.","PeriodicalId":501307,"journal":{"name":"bioRxiv - Bioinformatics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable identification of lineage-specific gene regulatory networks from metacells with NetID\",\"authors\":\"Weixu Wang, Yichen Wang, Ruiqi Lyu, Dominic Grün\",\"doi\":\"10.1101/2024.09.08.611796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of gene regulatory networks (GRN) governing distinct cell fates in multilineage cellular differentiation systems is of critical importance for understanding cell fate decision. Single-cell RNA-sequencing (scRNA-seq) provides a powerful tool for the quantification of gene-level co-variation across the cell state manifold. However, accurate GRN reconstruction is hampered by the sparsity of scRNA-seq data introducing substantial technical noise. Moreover, the high dimensionality of typical scRNA-seq datasets limits the scalability of available approaches. To overcome these challenges, and to facilitate the inference of lineage-specific GRNs with directed regulator-target relations, we introduce NetID. This approach optimizes coverage of the cell state manifold by homogenous metacells and avoids spurious gene-gene correlations observed with available imputation methods. Benchmarking demonstrates superior performance of NetID compared to imputation-based GRN inference. By incorporating cell fate probability information, NetID facilitates prediction of lineage-specific GRNs and recovers known network motifs centered around lineage-determining transcription factors governing bone marrow hematopoiesis, making it a powerful toolkit for deciphering the gene regulatory control of cellular differentiation from large-scale single-cell transcriptome data.\",\"PeriodicalId\":501307,\"journal\":{\"name\":\"bioRxiv - Bioinformatics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.08.611796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.08.611796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

识别多线性细胞分化系统中调控不同细胞命运的基因调控网络(GRN)对于理解细胞命运的决定至关重要。单细胞 RNA 测序(scRNA-seq)为量化整个细胞状态多方面的基因水平共变提供了强大的工具。然而,scRNA-seq 数据的稀疏性带来了大量的技术噪音,阻碍了精确的 GRN 重建。此外,典型 scRNA-seq 数据集的高维度也限制了现有方法的可扩展性。为了克服这些挑战,并促进具有定向调控因子-靶标关系的品系特异性 GRN 的推断,我们引入了 NetID。这种方法通过同质元细胞优化了细胞状态流形的覆盖范围,避免了现有估算方法中观察到的虚假基因-基因相关性。基准测试表明,与基于估算的 GRN 推断相比,NetID 性能更优。通过整合细胞命运概率信息,NetID 可以帮助预测特定于品系的 GRN,并恢复以管理骨髓造血的品系决定性转录因子为中心的已知网络图案,使其成为从大规模单细胞转录组数据中解读细胞分化基因调控的强大工具包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable identification of lineage-specific gene regulatory networks from metacells with NetID
The identification of gene regulatory networks (GRN) governing distinct cell fates in multilineage cellular differentiation systems is of critical importance for understanding cell fate decision. Single-cell RNA-sequencing (scRNA-seq) provides a powerful tool for the quantification of gene-level co-variation across the cell state manifold. However, accurate GRN reconstruction is hampered by the sparsity of scRNA-seq data introducing substantial technical noise. Moreover, the high dimensionality of typical scRNA-seq datasets limits the scalability of available approaches. To overcome these challenges, and to facilitate the inference of lineage-specific GRNs with directed regulator-target relations, we introduce NetID. This approach optimizes coverage of the cell state manifold by homogenous metacells and avoids spurious gene-gene correlations observed with available imputation methods. Benchmarking demonstrates superior performance of NetID compared to imputation-based GRN inference. By incorporating cell fate probability information, NetID facilitates prediction of lineage-specific GRNs and recovers known network motifs centered around lineage-determining transcription factors governing bone marrow hematopoiesis, making it a powerful toolkit for deciphering the gene regulatory control of cellular differentiation from large-scale single-cell transcriptome data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信