利用 PASSAGE 学习空间转录组学中的表型相关特征

Chen-Kai Guo, Chen-Rui Xia, Guangdun Peng, Zhi-Jie Cao, Ge Gao
{"title":"利用 PASSAGE 学习空间转录组学中的表型相关特征","authors":"Chen-Kai Guo, Chen-Rui Xia, Guangdun Peng, Zhi-Jie Cao, Ge Gao","doi":"10.1101/2024.09.06.611564","DOIUrl":null,"url":null,"abstract":"Spatially resolved transcriptomics (SRT) is poised to advance our understanding of cellular organization within complex tissues under various physiological and pathological conditions at unprecedented resolution. Despite the development of numerous computational tools that facilitate the automatic identification of statistically significant intra-/inter-slice patterns (like spatial domains), these methods typically operate in an unsupervised manner, without leveraging sample characteristics like physiological/pathological states. Here we present PASSAGE (Phenotype Associated Spatial Signature Analysis with Graph-based Embedding), a rationally-designed deep learning framework for characterizing phenotype-associated signatures across multiple heterogeneous spatial slices effectively. In addition to its outstanding performance in systematic benchmarks, we have demonstrated PASSAGE's unique capability in calling sophisticated signatures in multiple real-world cases. The full package of PASSAGE is available at https://github.com/gao-lab/PASSAGE.","PeriodicalId":501307,"journal":{"name":"bioRxiv - Bioinformatics","volume":"2677 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning phenotype associated signature in spatial transcriptomics with PASSAGE\",\"authors\":\"Chen-Kai Guo, Chen-Rui Xia, Guangdun Peng, Zhi-Jie Cao, Ge Gao\",\"doi\":\"10.1101/2024.09.06.611564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatially resolved transcriptomics (SRT) is poised to advance our understanding of cellular organization within complex tissues under various physiological and pathological conditions at unprecedented resolution. Despite the development of numerous computational tools that facilitate the automatic identification of statistically significant intra-/inter-slice patterns (like spatial domains), these methods typically operate in an unsupervised manner, without leveraging sample characteristics like physiological/pathological states. Here we present PASSAGE (Phenotype Associated Spatial Signature Analysis with Graph-based Embedding), a rationally-designed deep learning framework for characterizing phenotype-associated signatures across multiple heterogeneous spatial slices effectively. In addition to its outstanding performance in systematic benchmarks, we have demonstrated PASSAGE's unique capability in calling sophisticated signatures in multiple real-world cases. The full package of PASSAGE is available at https://github.com/gao-lab/PASSAGE.\",\"PeriodicalId\":501307,\"journal\":{\"name\":\"bioRxiv - Bioinformatics\",\"volume\":\"2677 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.06.611564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.06.611564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空间分辨转录组学(SRT)将以前所未有的分辨率推动我们对各种生理和病理条件下复杂组织内细胞组织的了解。尽管已开发出许多计算工具,有助于自动识别具有统计学意义的切片内/切片间模式(如空间域),但这些方法通常以无监督的方式运行,没有利用生理/病理状态等样本特征。在这里,我们介绍 PASSAGE(基于图嵌入的表型相关空间特征分析),这是一种合理设计的深度学习框架,可有效描述多个异构空间切片的表型相关特征。除了在系统基准测试中表现出色外,我们还在多个实际案例中展示了 PASSAGE 在调用复杂特征方面的独特能力。PASSAGE 的完整软件包可在 https://github.com/gao-lab/PASSAGE 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning phenotype associated signature in spatial transcriptomics with PASSAGE
Spatially resolved transcriptomics (SRT) is poised to advance our understanding of cellular organization within complex tissues under various physiological and pathological conditions at unprecedented resolution. Despite the development of numerous computational tools that facilitate the automatic identification of statistically significant intra-/inter-slice patterns (like spatial domains), these methods typically operate in an unsupervised manner, without leveraging sample characteristics like physiological/pathological states. Here we present PASSAGE (Phenotype Associated Spatial Signature Analysis with Graph-based Embedding), a rationally-designed deep learning framework for characterizing phenotype-associated signatures across multiple heterogeneous spatial slices effectively. In addition to its outstanding performance in systematic benchmarks, we have demonstrated PASSAGE's unique capability in calling sophisticated signatures in multiple real-world cases. The full package of PASSAGE is available at https://github.com/gao-lab/PASSAGE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信