{"title":"使用 TMB(模板模型生成器)进行稀疏贝叶斯学习","authors":"Ingvild M. Helgøy, Hans J. Skaug, Yushu Li","doi":"10.1007/s11222-024-10476-8","DOIUrl":null,"url":null,"abstract":"<p>Sparse Bayesian Learning, and more specifically the Relevance Vector Machine (RVM), can be used in supervised learning for both classification and regression problems. Such methods are particularly useful when applied to big data in order to find a sparse (in weight space) representation of the model. This paper demonstrates that the Template Model Builder (TMB) is an accurate and flexible computational framework for implementation of sparse Bayesian learning methods.The user of TMB is only required to specify the joint likelihood of the weights and the data, while the Laplace approximation of the marginal likelihood is automatically evaluated to numerical precision. This approximation is in turn used to estimate hyperparameters by maximum marginal likelihood. In order to reduce the computational cost of the Laplace approximation we introduce the notion of an “active set” of weights, and we devise an algorithm for dynamically updating this set until convergence, similar to what is done in other RVM type methods. We implement two different methods using TMB; the RVM and the Probabilistic Feature Selection and Classification Vector Machine method, where the latter also performs feature selection. Experiments based on benchmark data show that our TMB implementation performs comparable to that of the original implementation, but at a lower implementation cost. TMB can also calculate model and prediction uncertainty, by including estimation uncertainty from both latent variables and the hyperparameters. In conclusion, we find that TMB is a flexible tool that facilitates implementation and prototyping of sparse Bayesian methods.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Bayesian learning using TMB (Template Model Builder)\",\"authors\":\"Ingvild M. Helgøy, Hans J. Skaug, Yushu Li\",\"doi\":\"10.1007/s11222-024-10476-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sparse Bayesian Learning, and more specifically the Relevance Vector Machine (RVM), can be used in supervised learning for both classification and regression problems. Such methods are particularly useful when applied to big data in order to find a sparse (in weight space) representation of the model. This paper demonstrates that the Template Model Builder (TMB) is an accurate and flexible computational framework for implementation of sparse Bayesian learning methods.The user of TMB is only required to specify the joint likelihood of the weights and the data, while the Laplace approximation of the marginal likelihood is automatically evaluated to numerical precision. This approximation is in turn used to estimate hyperparameters by maximum marginal likelihood. In order to reduce the computational cost of the Laplace approximation we introduce the notion of an “active set” of weights, and we devise an algorithm for dynamically updating this set until convergence, similar to what is done in other RVM type methods. We implement two different methods using TMB; the RVM and the Probabilistic Feature Selection and Classification Vector Machine method, where the latter also performs feature selection. Experiments based on benchmark data show that our TMB implementation performs comparable to that of the original implementation, but at a lower implementation cost. TMB can also calculate model and prediction uncertainty, by including estimation uncertainty from both latent variables and the hyperparameters. In conclusion, we find that TMB is a flexible tool that facilitates implementation and prototyping of sparse Bayesian methods.</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10476-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10476-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Sparse Bayesian learning using TMB (Template Model Builder)
Sparse Bayesian Learning, and more specifically the Relevance Vector Machine (RVM), can be used in supervised learning for both classification and regression problems. Such methods are particularly useful when applied to big data in order to find a sparse (in weight space) representation of the model. This paper demonstrates that the Template Model Builder (TMB) is an accurate and flexible computational framework for implementation of sparse Bayesian learning methods.The user of TMB is only required to specify the joint likelihood of the weights and the data, while the Laplace approximation of the marginal likelihood is automatically evaluated to numerical precision. This approximation is in turn used to estimate hyperparameters by maximum marginal likelihood. In order to reduce the computational cost of the Laplace approximation we introduce the notion of an “active set” of weights, and we devise an algorithm for dynamically updating this set until convergence, similar to what is done in other RVM type methods. We implement two different methods using TMB; the RVM and the Probabilistic Feature Selection and Classification Vector Machine method, where the latter also performs feature selection. Experiments based on benchmark data show that our TMB implementation performs comparable to that of the original implementation, but at a lower implementation cost. TMB can also calculate model and prediction uncertainty, by including estimation uncertainty from both latent variables and the hyperparameters. In conclusion, we find that TMB is a flexible tool that facilitates implementation and prototyping of sparse Bayesian methods.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.