Masafumi Kodama, Ryoga Yamazaki, Jun Hayakawa, Gakuto Murata, Ko Tomikawa, Tomohiko Kawamura, Gen Kume, Toru Kobari
{"title":"通过 DNA 代谢编码揭示海胆共生体 Dactylopleustes yoshimurai(两栖动物)的摄食生态学","authors":"Masafumi Kodama, Ryoga Yamazaki, Jun Hayakawa, Gakuto Murata, Ko Tomikawa, Tomohiko Kawamura, Gen Kume, Toru Kobari","doi":"10.1007/s00227-024-04507-1","DOIUrl":null,"url":null,"abstract":"<p>The nature of symbiotic relationships between organisms can be difficult to assess and may range from commensalism, to mutualism, and parasitism. Trophic linkage and feeding ecology are essential to disentangle symbiont-host relationships/interactions. Amphipods of the genus <i>Dactylopleustes</i> are known as urchin symbionts. Though their ecology remains largely unknown, <i>Dactylopleustes</i> was recently reported to aggregate on diseased hosts, suggesting that <i>Dactylopleustes</i> feeds on diseased urchins’ tissues and uses urchins as both a habitat and prey. We investigated by DNA metabarcoding analyses, the feeding ecology of <i>Dactylopleustes yoshimurai</i> in relation to growth and disease status of the host (<i>Strongylocentrotus intermedius</i>). Contrary to our hypothesis, sequence reads from the gut contents were dominated by planktonic copepods regardless of body size or host disease status. These results suggest that they mainly feed on copepod fecal pellets deposited on sediments, and do not have a strong trophic linkage with their host. Large individuals on diseased urchins feed more on urchins than those on healthy urchins. However, their main prey still remains copepods, implying that host disease has a limited effect on the feeding behavior. In conclusion, our study indicates that this species is mainly commensal, but also may parasitize its host depending on the situation.</p>","PeriodicalId":18365,"journal":{"name":"Marine Biology","volume":"33 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feeding ecology of the urchin symbiont Dactylopleustes yoshimurai (Amphipoda) revealed by DNA metabarcoding\",\"authors\":\"Masafumi Kodama, Ryoga Yamazaki, Jun Hayakawa, Gakuto Murata, Ko Tomikawa, Tomohiko Kawamura, Gen Kume, Toru Kobari\",\"doi\":\"10.1007/s00227-024-04507-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The nature of symbiotic relationships between organisms can be difficult to assess and may range from commensalism, to mutualism, and parasitism. Trophic linkage and feeding ecology are essential to disentangle symbiont-host relationships/interactions. Amphipods of the genus <i>Dactylopleustes</i> are known as urchin symbionts. Though their ecology remains largely unknown, <i>Dactylopleustes</i> was recently reported to aggregate on diseased hosts, suggesting that <i>Dactylopleustes</i> feeds on diseased urchins’ tissues and uses urchins as both a habitat and prey. We investigated by DNA metabarcoding analyses, the feeding ecology of <i>Dactylopleustes yoshimurai</i> in relation to growth and disease status of the host (<i>Strongylocentrotus intermedius</i>). Contrary to our hypothesis, sequence reads from the gut contents were dominated by planktonic copepods regardless of body size or host disease status. These results suggest that they mainly feed on copepod fecal pellets deposited on sediments, and do not have a strong trophic linkage with their host. Large individuals on diseased urchins feed more on urchins than those on healthy urchins. However, their main prey still remains copepods, implying that host disease has a limited effect on the feeding behavior. In conclusion, our study indicates that this species is mainly commensal, but also may parasitize its host depending on the situation.</p>\",\"PeriodicalId\":18365,\"journal\":{\"name\":\"Marine Biology\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00227-024-04507-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00227-024-04507-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
生物间共生关系的性质可能难以评估,其范围可能包括共生、互生和寄生。营养联系和摄食生态学对于区分共生-宿主关系/相互作用至关重要。片脚类动物 Dactylopleustes 属是众所周知的海胆共生体。虽然它们的生态学仍不为人知,但最近有报道称,Dactylopleustes聚集在患病的宿主身上,这表明Dactylopleustes以患病海胆的组织为食,并将海胆作为栖息地和猎物。我们通过 DNA 代谢编码分析,研究了 Dactylopleustes yoshimurai 的摄食生态与宿主(Strongylocentrotus intermedius)的生长和疾病状态的关系。与我们的假设相反,无论体型大小或宿主疾病状况如何,肠道内容物的序列读数均以浮游桡足类为主。这些结果表明,它们主要以沉积在沉积物上的桡足类排泄物为食,与宿主没有很强的营养联系。患病海胆上的大个体比健康海胆上的大个体更多地捕食海胆。然而,它们的主要猎物仍然是桡足类,这意味着宿主疾病对其摄食行为的影响有限。总之,我们的研究表明,该物种主要是共生的,但也可能根据情况寄生于宿主。
Feeding ecology of the urchin symbiont Dactylopleustes yoshimurai (Amphipoda) revealed by DNA metabarcoding
The nature of symbiotic relationships between organisms can be difficult to assess and may range from commensalism, to mutualism, and parasitism. Trophic linkage and feeding ecology are essential to disentangle symbiont-host relationships/interactions. Amphipods of the genus Dactylopleustes are known as urchin symbionts. Though their ecology remains largely unknown, Dactylopleustes was recently reported to aggregate on diseased hosts, suggesting that Dactylopleustes feeds on diseased urchins’ tissues and uses urchins as both a habitat and prey. We investigated by DNA metabarcoding analyses, the feeding ecology of Dactylopleustes yoshimurai in relation to growth and disease status of the host (Strongylocentrotus intermedius). Contrary to our hypothesis, sequence reads from the gut contents were dominated by planktonic copepods regardless of body size or host disease status. These results suggest that they mainly feed on copepod fecal pellets deposited on sediments, and do not have a strong trophic linkage with their host. Large individuals on diseased urchins feed more on urchins than those on healthy urchins. However, their main prey still remains copepods, implying that host disease has a limited effect on the feeding behavior. In conclusion, our study indicates that this species is mainly commensal, but also may parasitize its host depending on the situation.
期刊介绍:
Marine Biology publishes original and internationally significant contributions from all fields of marine biology. Special emphasis is given to articles which promote the understanding of life in the sea, organism-environment interactions, interactions between organisms, and the functioning of the marine biosphere.