皮卡尔数 1 的法诺流形的切线束大和动力学刚度(附刘杰的附录)

IF 1.3 2区 数学 Q1 MATHEMATICS
Feng Shao, Guolei Zhong
{"title":"皮卡尔数 1 的法诺流形的切线束大和动力学刚度(附刘杰的附录)","authors":"Feng Shao, Guolei Zhong","doi":"10.1007/s00208-024-02955-0","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(f:X\\rightarrow Y\\)</span> be a surjective morphism of Fano manifolds of Picard number 1 whose VMRTs at a general point are not dual defective. Suppose that the tangent bundle <span>\\(T_X\\)</span> is big. We show that <span>\\(f\\)</span> is an isomorphism unless <span>\\(Y\\)</span> is a projective space. As applications, we explore the bigness of the tangent bundles of complete intersections, del Pezzo manifolds, and Mukai manifolds, as well as their dynamical rigidity.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"7 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bigness of tangent bundles and dynamical rigidity of Fano manifolds of Picard number 1 (with an appendix by Jie Liu)\",\"authors\":\"Feng Shao, Guolei Zhong\",\"doi\":\"10.1007/s00208-024-02955-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(f:X\\\\rightarrow Y\\\\)</span> be a surjective morphism of Fano manifolds of Picard number 1 whose VMRTs at a general point are not dual defective. Suppose that the tangent bundle <span>\\\\(T_X\\\\)</span> is big. We show that <span>\\\\(f\\\\)</span> is an isomorphism unless <span>\\\\(Y\\\\)</span> is a projective space. As applications, we explore the bigness of the tangent bundles of complete intersections, del Pezzo manifolds, and Mukai manifolds, as well as their dynamical rigidity.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02955-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02955-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(f:X\rightarrow Y\) 是皮卡尔数为 1 的法诺流形的一个投射态,它在一般点的 VMRT 不是对偶缺陷的。假设切线束 \(T_X\) 是大的。我们证明除非 \(Y\) 是投影空间,否则 \(f\) 是同构的。作为应用,我们探讨了完全相交、德尔佩佐流形和穆凯流形的切线束的大,以及它们的动力学刚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bigness of tangent bundles and dynamical rigidity of Fano manifolds of Picard number 1 (with an appendix by Jie Liu)

Bigness of tangent bundles and dynamical rigidity of Fano manifolds of Picard number 1 (with an appendix by Jie Liu)

Let \(f:X\rightarrow Y\) be a surjective morphism of Fano manifolds of Picard number 1 whose VMRTs at a general point are not dual defective. Suppose that the tangent bundle \(T_X\) is big. We show that \(f\) is an isomorphism unless \(Y\) is a projective space. As applications, we explore the bigness of the tangent bundles of complete intersections, del Pezzo manifolds, and Mukai manifolds, as well as their dynamical rigidity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信