Shota Fukushima, Yong-Gwan Ji, Hyeonbae Kang, Xiaofei Li
{"title":"在夹杂物位置紧密、结合不完全的情况下应力的精细度","authors":"Shota Fukushima, Yong-Gwan Ji, Hyeonbae Kang, Xiaofei Li","doi":"10.1007/s00208-024-02968-9","DOIUrl":null,"url":null,"abstract":"<p>If two conducting or insulating inclusions are closely located, the gradient of the solution may become arbitrarily large as the distance between inclusions tends to zero, resulting in high concentration of stress in between two inclusions. This happens if the bonding of the inclusions and the matrix is perfect, meaning that the potential and flux are continuous across the interface. In this paper, we consider the case when the bonding is imperfect. We consider the case when there are two circular inclusions of the same radii with the imperfect bonding interfaces and prove that the gradient of the solution is bounded regardless of the distance between inclusions if the bonding parameter is finite. This result is of particular importance since the imperfect bonding interface condition is an approximation of the membrane structure of biological inclusions such as biological cells.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"1896 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finiteness of the stress in presence of closely located inclusions with imperfect bonding\",\"authors\":\"Shota Fukushima, Yong-Gwan Ji, Hyeonbae Kang, Xiaofei Li\",\"doi\":\"10.1007/s00208-024-02968-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>If two conducting or insulating inclusions are closely located, the gradient of the solution may become arbitrarily large as the distance between inclusions tends to zero, resulting in high concentration of stress in between two inclusions. This happens if the bonding of the inclusions and the matrix is perfect, meaning that the potential and flux are continuous across the interface. In this paper, we consider the case when the bonding is imperfect. We consider the case when there are two circular inclusions of the same radii with the imperfect bonding interfaces and prove that the gradient of the solution is bounded regardless of the distance between inclusions if the bonding parameter is finite. This result is of particular importance since the imperfect bonding interface condition is an approximation of the membrane structure of biological inclusions such as biological cells.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"1896 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02968-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02968-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Finiteness of the stress in presence of closely located inclusions with imperfect bonding
If two conducting or insulating inclusions are closely located, the gradient of the solution may become arbitrarily large as the distance between inclusions tends to zero, resulting in high concentration of stress in between two inclusions. This happens if the bonding of the inclusions and the matrix is perfect, meaning that the potential and flux are continuous across the interface. In this paper, we consider the case when the bonding is imperfect. We consider the case when there are two circular inclusions of the same radii with the imperfect bonding interfaces and prove that the gradient of the solution is bounded regardless of the distance between inclusions if the bonding parameter is finite. This result is of particular importance since the imperfect bonding interface condition is an approximation of the membrane structure of biological inclusions such as biological cells.
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.