赫克代数对扭曲动机核类和 K 理论稳定包络的作用

IF 1.3 2区 数学 Q1 MATHEMATICS
Jakub Koncki, Andrzej Weber
{"title":"赫克代数对扭曲动机核类和 K 理论稳定包络的作用","authors":"Jakub Koncki, Andrzej Weber","doi":"10.1007/s00208-024-02953-2","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a linear semisimple algebraic group and <i>B</i> its Borel subgroup. Let <span>\\({\\mathbb {T}}\\subset B\\)</span> be the maximal torus. We study the inductive construction of Bott–Samelson varieties to obtain recursive formulas for the twisted motivic Chern classes of Schubert cells in <i>G</i>/<i>B</i>. To this end we introduce two families of operators acting on the equivariant K-theory <span>\\({\\text {K}}_{\\mathbb {T}}(G/B)[y]\\)</span>, the right and left Demazure–Lusztig operators depending on a parameter. The twisted motivic Chern classes coincide (up to normalization) with the K-theoretic stable envelopes. Our results imply wall-crossing formulas for a change of the weight chamber and slope parameters. The right and left operators generate a twisted double Hecke algebra. We show that in the type <i>A</i> this algebra acts on the Laurent polynomials. This action is a natural lift of the action on <span>\\({\\text {K}}_{\\mathbb {T}}(G/B)[y]\\)</span> with respect to the Kirwan map. We show that the left and right twisted Demazure–Lusztig operators provide a recursion for twisted motivic Chern classes of matrix Schubert varieties.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"17 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hecke algebra action on twisted motivic Chern classes and K-theoretic stable envelopes\",\"authors\":\"Jakub Koncki, Andrzej Weber\",\"doi\":\"10.1007/s00208-024-02953-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a linear semisimple algebraic group and <i>B</i> its Borel subgroup. Let <span>\\\\({\\\\mathbb {T}}\\\\subset B\\\\)</span> be the maximal torus. We study the inductive construction of Bott–Samelson varieties to obtain recursive formulas for the twisted motivic Chern classes of Schubert cells in <i>G</i>/<i>B</i>. To this end we introduce two families of operators acting on the equivariant K-theory <span>\\\\({\\\\text {K}}_{\\\\mathbb {T}}(G/B)[y]\\\\)</span>, the right and left Demazure–Lusztig operators depending on a parameter. The twisted motivic Chern classes coincide (up to normalization) with the K-theoretic stable envelopes. Our results imply wall-crossing formulas for a change of the weight chamber and slope parameters. The right and left operators generate a twisted double Hecke algebra. We show that in the type <i>A</i> this algebra acts on the Laurent polynomials. This action is a natural lift of the action on <span>\\\\({\\\\text {K}}_{\\\\mathbb {T}}(G/B)[y]\\\\)</span> with respect to the Kirwan map. We show that the left and right twisted Demazure–Lusztig operators provide a recursion for twisted motivic Chern classes of matrix Schubert varieties.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02953-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02953-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 G 是线性半简单代数群,B 是其 Borel 子群。让 \({\mathbb {T}}\subset B\) 是最大环。我们研究 Bott-Samelson varieties 的归纳构造,从而得到 G/B 中舒伯特单元的扭转动机切尔恩类的递归公式。为此,我们引入了作用于等变 K 理论 \({\text {K}}_{\mathbb {T}}(G/B)[y]\) 的两组算子,即取决于一个参数的右德马祖尔-卢兹蒂格算子和左德马祖尔-卢兹蒂格算子。扭转的动机切尔恩类与 K 理论稳定包络重合(直到归一化)。我们的结果意味着改变权重室和斜率参数的穿墙公式。左右算子生成了一个扭曲的双赫克代数。我们证明,在类型 A 中,这个代数作用于劳伦多项式。这个作用是关于基尔万映射的 \({\text {K}}_{\mathbb {T}}(G/B)[y]\) 作用的自然提升。我们证明了左右扭曲的德马祖尔-卢兹蒂格算子为矩阵舒伯特(Matrix Schubert)变体的扭曲动机切恩类提供了一个递归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hecke algebra action on twisted motivic Chern classes and K-theoretic stable envelopes

Hecke algebra action on twisted motivic Chern classes and K-theoretic stable envelopes

Let G be a linear semisimple algebraic group and B its Borel subgroup. Let \({\mathbb {T}}\subset B\) be the maximal torus. We study the inductive construction of Bott–Samelson varieties to obtain recursive formulas for the twisted motivic Chern classes of Schubert cells in G/B. To this end we introduce two families of operators acting on the equivariant K-theory \({\text {K}}_{\mathbb {T}}(G/B)[y]\), the right and left Demazure–Lusztig operators depending on a parameter. The twisted motivic Chern classes coincide (up to normalization) with the K-theoretic stable envelopes. Our results imply wall-crossing formulas for a change of the weight chamber and slope parameters. The right and left operators generate a twisted double Hecke algebra. We show that in the type A this algebra acts on the Laurent polynomials. This action is a natural lift of the action on \({\text {K}}_{\mathbb {T}}(G/B)[y]\) with respect to the Kirwan map. We show that the left and right twisted Demazure–Lusztig operators provide a recursion for twisted motivic Chern classes of matrix Schubert varieties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信