剪切梁模型的长时动力学和奇异极限

IF 1.3 2区 数学 Q1 MATHEMATICS
M. M. Freitas, D. S. Almeida, A. J. A. Ramos, M. J. Dos Santos, R. Q. Caljaro
{"title":"剪切梁模型的长时动力学和奇异极限","authors":"M. M. Freitas, D. S. Almeida, A. J. A. Ramos, M. J. Dos Santos, R. Q. Caljaro","doi":"10.1007/s00208-024-02978-7","DOIUrl":null,"url":null,"abstract":"<p>This paper is dedicated to studying the long-term dynamics of a beam model known as the Shear beam model (without rotary inertia). Unlike the classical Timoshenko beam model, which combines bending moment and shear force, the Shear beam model has only one wave speed without blow-up at lower frequencies. This distinction has a significant impact on the analysis of long-term dynamic properties. We prove that the Euler–Bernoulli beam equation can be obtained as a singular limit of the Shear beam model when the shear elasticity modulus <span>\\(\\kappa \\)</span> tends to infinity. By introducing a dissipative mechanism in the vertical displacement equation, we prove the existence of a smooth global attractor with finite fractal dimension. Finally, we demonstrate that the global attractor for the Shear beam model converges upper-semicontinuously to the global attractor for the Euler–Bernoulli equation as <span>\\(\\kappa \\rightarrow \\infty \\)</span>.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"27 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-time dynamics and singular limit of a shear beam model\",\"authors\":\"M. M. Freitas, D. S. Almeida, A. J. A. Ramos, M. J. Dos Santos, R. Q. Caljaro\",\"doi\":\"10.1007/s00208-024-02978-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is dedicated to studying the long-term dynamics of a beam model known as the Shear beam model (without rotary inertia). Unlike the classical Timoshenko beam model, which combines bending moment and shear force, the Shear beam model has only one wave speed without blow-up at lower frequencies. This distinction has a significant impact on the analysis of long-term dynamic properties. We prove that the Euler–Bernoulli beam equation can be obtained as a singular limit of the Shear beam model when the shear elasticity modulus <span>\\\\(\\\\kappa \\\\)</span> tends to infinity. By introducing a dissipative mechanism in the vertical displacement equation, we prove the existence of a smooth global attractor with finite fractal dimension. Finally, we demonstrate that the global attractor for the Shear beam model converges upper-semicontinuously to the global attractor for the Euler–Bernoulli equation as <span>\\\\(\\\\kappa \\\\rightarrow \\\\infty \\\\)</span>.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02978-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02978-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于研究一种被称为剪力梁模型(无旋转惯性)的梁模型的长期动力学。与结合了弯矩和剪力的经典季莫申科梁模型不同,剪力梁模型只有一种波速,在较低频率下不会出现炸裂。这一区别对长期动态特性的分析具有重大影响。我们证明,当剪切弹性模量 \(\kappa \)趋于无穷大时,欧拉-伯努利梁方程可以作为剪切梁模型的奇异极限得到。通过在垂直位移方程中引入耗散机制,我们证明了具有有限分形维度的光滑全局吸引子的存在。最后,我们证明了剪切梁模型的全局吸引子以 \(\kappa \rightarrow \infty \) 的方式向上连续收敛于欧拉-伯努利方程的全局吸引子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-time dynamics and singular limit of a shear beam model

This paper is dedicated to studying the long-term dynamics of a beam model known as the Shear beam model (without rotary inertia). Unlike the classical Timoshenko beam model, which combines bending moment and shear force, the Shear beam model has only one wave speed without blow-up at lower frequencies. This distinction has a significant impact on the analysis of long-term dynamic properties. We prove that the Euler–Bernoulli beam equation can be obtained as a singular limit of the Shear beam model when the shear elasticity modulus \(\kappa \) tends to infinity. By introducing a dissipative mechanism in the vertical displacement equation, we prove the existence of a smooth global attractor with finite fractal dimension. Finally, we demonstrate that the global attractor for the Shear beam model converges upper-semicontinuously to the global attractor for the Euler–Bernoulli equation as \(\kappa \rightarrow \infty \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信