{"title":"凸域的双线性 Bochner-Riesz 均值和 Kakeya 最大函数","authors":"Ankit Bhojak, Surjeet Singh Choudhary, Saurabh Shrivastava","doi":"10.1007/s00208-024-02976-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper we introduce bilinear Bochner–Riesz means associated with convex domains in the plane <span>\\({\\mathbb {R}}^2\\)</span> and study their <span>\\(L^p\\)</span>-boundedness properties for a wide range of exponents. One of the important aspects of our proof involves the use of bilinear Kakeya maximal function in the context of bilinear Bochner–Riesz problem. This amounts to establishing suitable <span>\\(L^p\\)</span>-estimates for the later. We also point out some natural connections between bilinear Kakeya maximal function and Lacey’s bilinear maximal function.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"7 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilinear Bochner–Riesz means for convex domains and Kakeya maximal function\",\"authors\":\"Ankit Bhojak, Surjeet Singh Choudhary, Saurabh Shrivastava\",\"doi\":\"10.1007/s00208-024-02976-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we introduce bilinear Bochner–Riesz means associated with convex domains in the plane <span>\\\\({\\\\mathbb {R}}^2\\\\)</span> and study their <span>\\\\(L^p\\\\)</span>-boundedness properties for a wide range of exponents. One of the important aspects of our proof involves the use of bilinear Kakeya maximal function in the context of bilinear Bochner–Riesz problem. This amounts to establishing suitable <span>\\\\(L^p\\\\)</span>-estimates for the later. We also point out some natural connections between bilinear Kakeya maximal function and Lacey’s bilinear maximal function.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02976-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02976-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bilinear Bochner–Riesz means for convex domains and Kakeya maximal function
In this paper we introduce bilinear Bochner–Riesz means associated with convex domains in the plane \({\mathbb {R}}^2\) and study their \(L^p\)-boundedness properties for a wide range of exponents. One of the important aspects of our proof involves the use of bilinear Kakeya maximal function in the context of bilinear Bochner–Riesz problem. This amounts to establishing suitable \(L^p\)-estimates for the later. We also point out some natural connections between bilinear Kakeya maximal function and Lacey’s bilinear maximal function.
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.