凸域的双线性 Bochner-Riesz 均值和 Kakeya 最大函数

IF 1.3 2区 数学 Q1 MATHEMATICS
Ankit Bhojak, Surjeet Singh Choudhary, Saurabh Shrivastava
{"title":"凸域的双线性 Bochner-Riesz 均值和 Kakeya 最大函数","authors":"Ankit Bhojak, Surjeet Singh Choudhary, Saurabh Shrivastava","doi":"10.1007/s00208-024-02976-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper we introduce bilinear Bochner–Riesz means associated with convex domains in the plane <span>\\({\\mathbb {R}}^2\\)</span> and study their <span>\\(L^p\\)</span>-boundedness properties for a wide range of exponents. One of the important aspects of our proof involves the use of bilinear Kakeya maximal function in the context of bilinear Bochner–Riesz problem. This amounts to establishing suitable <span>\\(L^p\\)</span>-estimates for the later. We also point out some natural connections between bilinear Kakeya maximal function and Lacey’s bilinear maximal function.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"7 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilinear Bochner–Riesz means for convex domains and Kakeya maximal function\",\"authors\":\"Ankit Bhojak, Surjeet Singh Choudhary, Saurabh Shrivastava\",\"doi\":\"10.1007/s00208-024-02976-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we introduce bilinear Bochner–Riesz means associated with convex domains in the plane <span>\\\\({\\\\mathbb {R}}^2\\\\)</span> and study their <span>\\\\(L^p\\\\)</span>-boundedness properties for a wide range of exponents. One of the important aspects of our proof involves the use of bilinear Kakeya maximal function in the context of bilinear Bochner–Riesz problem. This amounts to establishing suitable <span>\\\\(L^p\\\\)</span>-estimates for the later. We also point out some natural connections between bilinear Kakeya maximal function and Lacey’s bilinear maximal function.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02976-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02976-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们引入了与平面内凸域相关的双线性 Bochner-Riesz 方法({\mathbb {R}}^2\),并研究了它们在广泛指数范围内的(L^p\)有界性质。我们证明的一个重要方面涉及在双线性 Bochner-Riesz 问题中使用双线性 Kakeya 最大函数。这相当于为后者建立了合适的\(L^p\)估计值。我们还指出了双线性 Kakeya 最大函数与 Lacey 的双线性最大函数之间的一些自然联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bilinear Bochner–Riesz means for convex domains and Kakeya maximal function

Bilinear Bochner–Riesz means for convex domains and Kakeya maximal function

In this paper we introduce bilinear Bochner–Riesz means associated with convex domains in the plane \({\mathbb {R}}^2\) and study their \(L^p\)-boundedness properties for a wide range of exponents. One of the important aspects of our proof involves the use of bilinear Kakeya maximal function in the context of bilinear Bochner–Riesz problem. This amounts to establishing suitable \(L^p\)-estimates for the later. We also point out some natural connections between bilinear Kakeya maximal function and Lacey’s bilinear maximal function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信