论分数奥立兹-索博列夫函数的连续性模数

IF 1.3 2区 数学 Q1 MATHEMATICS
Angela Alberico, Andrea Cianchi, Luboš Pick, Lenka Slavíková
{"title":"论分数奥立兹-索博列夫函数的连续性模数","authors":"Angela Alberico, Andrea Cianchi, Luboš Pick, Lenka Slavíková","doi":"10.1007/s00208-024-02964-z","DOIUrl":null,"url":null,"abstract":"<p>Necessary and sufficient conditions are presented for a fractional Orlicz-Sobolev space on <span>\\({\\mathbb {R}}^n\\)</span> to be continuously embedded into a space of uniformly continuous functions. The optimal modulus of continuity is exhibited whenever these conditions are fulfilled. These results pertain to the supercritical Sobolev regime and complement earlier sharp embeddings into rearrangement-invariant spaces concerning the subcritical setting. Classical embeddings for fractional Sobolev spaces into Hölder spaces are recovered as special instances. Proofs require novel strategies, since customary methods fail to produce optimal conclusions.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"56 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the modulus of continuity of fractional Orlicz-Sobolev functions\",\"authors\":\"Angela Alberico, Andrea Cianchi, Luboš Pick, Lenka Slavíková\",\"doi\":\"10.1007/s00208-024-02964-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Necessary and sufficient conditions are presented for a fractional Orlicz-Sobolev space on <span>\\\\({\\\\mathbb {R}}^n\\\\)</span> to be continuously embedded into a space of uniformly continuous functions. The optimal modulus of continuity is exhibited whenever these conditions are fulfilled. These results pertain to the supercritical Sobolev regime and complement earlier sharp embeddings into rearrangement-invariant spaces concerning the subcritical setting. Classical embeddings for fractional Sobolev spaces into Hölder spaces are recovered as special instances. Proofs require novel strategies, since customary methods fail to produce optimal conclusions.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02964-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02964-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了将\({\mathbb {R}}^n\) 上的分数奥利兹-索博廖夫空间连续嵌入到均匀连续函数空间的必要条件和充分条件。只要满足这些条件,就会显示出最优的连续性模量。这些结果与超临界索博廖夫机制有关,是对早先关于次临界设置的锐嵌入到重排不变空间的补充。分数 Sobolev 空间到霍尔德空间的经典嵌入作为特例得到了恢复。由于传统方法无法得出最佳结论,因此证明需要新颖的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the modulus of continuity of fractional Orlicz-Sobolev functions

Necessary and sufficient conditions are presented for a fractional Orlicz-Sobolev space on \({\mathbb {R}}^n\) to be continuously embedded into a space of uniformly continuous functions. The optimal modulus of continuity is exhibited whenever these conditions are fulfilled. These results pertain to the supercritical Sobolev regime and complement earlier sharp embeddings into rearrangement-invariant spaces concerning the subcritical setting. Classical embeddings for fractional Sobolev spaces into Hölder spaces are recovered as special instances. Proofs require novel strategies, since customary methods fail to produce optimal conclusions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信