涉及 p-Laplacian $$-\Delta _{p}$$ 的 $$D^{1,p}$ 临界准线性静态薛定谔-哈特里方程的非负解的径向对称性和尖锐渐近行为

IF 1.3 2区 数学 Q1 MATHEMATICS
Wei Dai, Yafei Li, Zhao Liu
{"title":"涉及 p-Laplacian $$-\\Delta _{p}$$ 的 $$D^{1,p}$ 临界准线性静态薛定谔-哈特里方程的非负解的径向对称性和尖锐渐近行为","authors":"Wei Dai, Yafei Li, Zhao Liu","doi":"10.1007/s00208-024-02986-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we mainly consider nonnegative weak solution to the <span>\\(D^{1,p}(\\mathbb {R}^{N})\\)</span>-critical quasi-linear static Schrödinger–Hartree equation with <i>p</i>-Laplacian <span>\\(-\\Delta _{p}\\)</span> and nonlocal nonlinearity: </p><span>$$\\begin{aligned} -\\Delta _p u =\\left( |x|^{-2p}*|u|^{p}\\right) |u|^{p-2}u \\qquad&amp;\\text{ in } \\,\\, \\mathbb {R}^N, \\end{aligned}$$</span><p>where <span>\\(1&lt;p&lt;\\frac{N}{2}\\)</span>, <span>\\(N\\ge 3\\)</span> and <span>\\(u\\in D^{1,p}(\\mathbb {R}^N)\\)</span>. First, we establish regularity and the sharp estimates on asymptotic behaviors for any positive solution <i>u</i> (and <span>\\(|\\nabla u|\\)</span>) to more general equation <span>\\(-\\Delta _p u=V(x)u^{p-1}\\)</span> with <span>\\(V\\in L^{\\frac{N}{p}}(\\mathbb {R}^{N})\\)</span>. Then, as a consequence, we can apply the method of moving planes to prove that all the nontrivial nonnegative solutions are radially symmetric and strictly decreasing about some point <span>\\(x_0\\in \\mathbb {R}^N\\)</span>. The radial symmetry and sharp asymptotic estimates for more general nonlocal quasi-linear equations were also included.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"5 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radial symmetry and sharp asymptotic behaviors of nonnegative solutions to $$D^{1,p}$$ -critical quasi-linear static Schrödinger–Hartree equation involving p-Laplacian $$-\\\\Delta _{p}$$\",\"authors\":\"Wei Dai, Yafei Li, Zhao Liu\",\"doi\":\"10.1007/s00208-024-02986-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we mainly consider nonnegative weak solution to the <span>\\\\(D^{1,p}(\\\\mathbb {R}^{N})\\\\)</span>-critical quasi-linear static Schrödinger–Hartree equation with <i>p</i>-Laplacian <span>\\\\(-\\\\Delta _{p}\\\\)</span> and nonlocal nonlinearity: </p><span>$$\\\\begin{aligned} -\\\\Delta _p u =\\\\left( |x|^{-2p}*|u|^{p}\\\\right) |u|^{p-2}u \\\\qquad&amp;\\\\text{ in } \\\\,\\\\, \\\\mathbb {R}^N, \\\\end{aligned}$$</span><p>where <span>\\\\(1&lt;p&lt;\\\\frac{N}{2}\\\\)</span>, <span>\\\\(N\\\\ge 3\\\\)</span> and <span>\\\\(u\\\\in D^{1,p}(\\\\mathbb {R}^N)\\\\)</span>. First, we establish regularity and the sharp estimates on asymptotic behaviors for any positive solution <i>u</i> (and <span>\\\\(|\\\\nabla u|\\\\)</span>) to more general equation <span>\\\\(-\\\\Delta _p u=V(x)u^{p-1}\\\\)</span> with <span>\\\\(V\\\\in L^{\\\\frac{N}{p}}(\\\\mathbb {R}^{N})\\\\)</span>. Then, as a consequence, we can apply the method of moving planes to prove that all the nontrivial nonnegative solutions are radially symmetric and strictly decreasing about some point <span>\\\\(x_0\\\\in \\\\mathbb {R}^N\\\\)</span>. The radial symmetry and sharp asymptotic estimates for more general nonlocal quasi-linear equations were also included.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02986-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02986-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们主要考虑具有 p-拉普拉斯(-\Delta _{p}\)和非局部非线性的 \(D^{1,p}(\mathbb {R}^{N})\)-critical 准线性静态薛定谔-哈特里方程的非负弱解:$$\begin{aligned} -\Delta _p u =\left( |x|^{-2p}*|u|^{p}\right) |u|^{p-2}u \qquad&\text{ in }\,\,\mathbb{R}^N,\end{aligned}$$其中\(1<p<\frac{N}{2}\),\(N/ge 3\) and\(u\in D^{1,p}(\mathbb {R}^N)\).首先,我们为更一般的方程 \(-\Delta _p u=V(x)u^{p-1}\) with \(V\in L^{frac\{N}{p}}(\mathbb {R}^{N})\)的任何正解 u(和 \(|\nabla u|\))建立正则性和渐近行为的尖锐估计。因此,我们可以应用平面移动的方法来证明所有非小非负解都是径向对称的,并且严格围绕某个点 \(x_0\in \mathbb {R}^{N\) 递减。还包括更一般的非局部准线性方程的径向对称性和尖锐渐近估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radial symmetry and sharp asymptotic behaviors of nonnegative solutions to $$D^{1,p}$$ -critical quasi-linear static Schrödinger–Hartree equation involving p-Laplacian $$-\Delta _{p}$$

In this paper, we mainly consider nonnegative weak solution to the \(D^{1,p}(\mathbb {R}^{N})\)-critical quasi-linear static Schrödinger–Hartree equation with p-Laplacian \(-\Delta _{p}\) and nonlocal nonlinearity:

$$\begin{aligned} -\Delta _p u =\left( |x|^{-2p}*|u|^{p}\right) |u|^{p-2}u \qquad&\text{ in } \,\, \mathbb {R}^N, \end{aligned}$$

where \(1<p<\frac{N}{2}\), \(N\ge 3\) and \(u\in D^{1,p}(\mathbb {R}^N)\). First, we establish regularity and the sharp estimates on asymptotic behaviors for any positive solution u (and \(|\nabla u|\)) to more general equation \(-\Delta _p u=V(x)u^{p-1}\) with \(V\in L^{\frac{N}{p}}(\mathbb {R}^{N})\). Then, as a consequence, we can apply the method of moving planes to prove that all the nontrivial nonnegative solutions are radially symmetric and strictly decreasing about some point \(x_0\in \mathbb {R}^N\). The radial symmetry and sharp asymptotic estimates for more general nonlocal quasi-linear equations were also included.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信