高斯缺陷密度变化对基于 TIPS 五角星的 OTFT 电气特性的影响

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Sushil Kumar Jain, Amit Mahesh Joshi, Deepak Bharti, Chandni Kirpalani, Payal Bansal
{"title":"高斯缺陷密度变化对基于 TIPS 五角星的 OTFT 电气特性的影响","authors":"Sushil Kumar Jain, Amit Mahesh Joshi, Deepak Bharti, Chandni Kirpalani, Payal Bansal","doi":"10.1007/s00202-024-02679-z","DOIUrl":null,"url":null,"abstract":"<p>This paper presents the influence of changes in the density of deep (Gaussian) defects, their energetic position, and width on key electrical parameters, including threshold voltage, current on–off ratio, and maximum transconductance in TIPS-pentacene-based organic thin-film transistors (OTFTs). Due to intrinsic disorder, organic semiconductors function with a Gaussian density of states governing the movement and injection of charge carriers within these materials. Our study reveals the presence of deep acceptor and donor density of states within the band gap of the TIPS-pentacene can significantly affect the performance of OTFTs. When the Gaussian acceptor (<span>\\(N_{\\textrm{GA}}\\)</span>) value is <span>\\(1\\times 10^{15}\\,{\\textrm{cm}}^{-3}\\,{\\textrm{eV}}^{-1}\\)</span>, the current on–off ratio (<span>\\(I_{\\textrm{on}}/I_{\\textrm{off}}\\)</span>) is at its peak, reaching <span>\\(2.3\\times 10^7\\)</span>, and the mobility is notably high at <span>\\(0.0270\\, {\\textrm{cm}}^{2}\\,{\\textrm{V}}^{-1}\\,{\\textrm{S}}^{-1}\\)</span>. In the case of the Gaussian donor (<span>\\(N_{\\textrm{GD}}\\)</span>) with a value of <span>\\(1\\times 10^{17}\\,{\\textrm{cm}}^{-3}\\,{\\textrm{eV}}^{-1}\\)</span>, the current on–off ratio (<span>\\(I_{\\textrm{on}}/I_{\\textrm{off}}\\)</span>) reaches its peak at <span>\\(7.9\\times 10^7\\)</span>, and the lowest threshold voltage (<span>\\(V_{\\textrm{th}}\\)</span>) is at 1.26 V. For the acceptor-like Gaussian decay energy (<span>\\(W_{\\textrm{GA}}\\)</span>) with a value of 0.1 eV, the current on–off ratio (<span>\\(I_{\\textrm{on}}/I_{\\textrm{off}}\\)</span>) peaks at <span>\\(2.4\\times 10^5\\)</span>. The dynamic control of charge trapping in this context holds the potential for various applications, including memory-related functions and the emulation of neurons in neuromorphic circuits for deep learning and artificial intelligence.\n</p>","PeriodicalId":50546,"journal":{"name":"Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Gaussian defect density variations on electrical characteristics of TIPS-pentacene-based OTFT\",\"authors\":\"Sushil Kumar Jain, Amit Mahesh Joshi, Deepak Bharti, Chandni Kirpalani, Payal Bansal\",\"doi\":\"10.1007/s00202-024-02679-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents the influence of changes in the density of deep (Gaussian) defects, their energetic position, and width on key electrical parameters, including threshold voltage, current on–off ratio, and maximum transconductance in TIPS-pentacene-based organic thin-film transistors (OTFTs). Due to intrinsic disorder, organic semiconductors function with a Gaussian density of states governing the movement and injection of charge carriers within these materials. Our study reveals the presence of deep acceptor and donor density of states within the band gap of the TIPS-pentacene can significantly affect the performance of OTFTs. When the Gaussian acceptor (<span>\\\\(N_{\\\\textrm{GA}}\\\\)</span>) value is <span>\\\\(1\\\\times 10^{15}\\\\,{\\\\textrm{cm}}^{-3}\\\\,{\\\\textrm{eV}}^{-1}\\\\)</span>, the current on–off ratio (<span>\\\\(I_{\\\\textrm{on}}/I_{\\\\textrm{off}}\\\\)</span>) is at its peak, reaching <span>\\\\(2.3\\\\times 10^7\\\\)</span>, and the mobility is notably high at <span>\\\\(0.0270\\\\, {\\\\textrm{cm}}^{2}\\\\,{\\\\textrm{V}}^{-1}\\\\,{\\\\textrm{S}}^{-1}\\\\)</span>. In the case of the Gaussian donor (<span>\\\\(N_{\\\\textrm{GD}}\\\\)</span>) with a value of <span>\\\\(1\\\\times 10^{17}\\\\,{\\\\textrm{cm}}^{-3}\\\\,{\\\\textrm{eV}}^{-1}\\\\)</span>, the current on–off ratio (<span>\\\\(I_{\\\\textrm{on}}/I_{\\\\textrm{off}}\\\\)</span>) reaches its peak at <span>\\\\(7.9\\\\times 10^7\\\\)</span>, and the lowest threshold voltage (<span>\\\\(V_{\\\\textrm{th}}\\\\)</span>) is at 1.26 V. For the acceptor-like Gaussian decay energy (<span>\\\\(W_{\\\\textrm{GA}}\\\\)</span>) with a value of 0.1 eV, the current on–off ratio (<span>\\\\(I_{\\\\textrm{on}}/I_{\\\\textrm{off}}\\\\)</span>) peaks at <span>\\\\(2.4\\\\times 10^5\\\\)</span>. The dynamic control of charge trapping in this context holds the potential for various applications, including memory-related functions and the emulation of neurons in neuromorphic circuits for deep learning and artificial intelligence.\\n</p>\",\"PeriodicalId\":50546,\"journal\":{\"name\":\"Electrical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00202-024-02679-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00202-024-02679-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了深层(高斯)缺陷密度、其能量位置和宽度的变化对阈值电压、电流通断比和基于 TIPS 五苯的有机薄膜晶体管 (OTFT) 最大跨导等关键电气参数的影响。由于内在无序,有机半导体以高斯态密度起作用,制约着这些材料内部电荷载流子的移动和注入。我们的研究揭示了 TIPS 五苯带隙内深层受体和供体态密度的存在会显著影响 OTFT 的性能。当高斯受体(\(N_{textrm{GA}}\))值为\(1/times 10^{15}\,{textrm{cm}}^{-3}\,{textrm{eV}}^{-1}\}) 时,电流通断比(\(I_{textrm{on}/I_{textrm{off}}\))达到峰值,为\(2.3times10^7\),而迁移率则显著地高达(0.0270\, {\textrm{cm}}^{2}\, {\textrm{V}}^{-1}\, {\textrm{S}}^{-1}\ )。在高斯供体(N_{textrm{GD}})值为(1(times 10^{17}\,{textrm{cm}}^{-3}\,{textrm{eV}}^{-1}})的情况下,电流通断比(I_{textrm{on}}/I_{textrm{off}})在(7.9乘以10^7),最低阈值电压(V_{\textrm{th}})为1.26 V。对于0.1 eV的受体样高斯衰变能(W_{textrm{GA}}),电流通断比(I_{textrm{on}}/I_{\textrm{off}})的峰值为(2.4乘以10^5)。在这种情况下,电荷捕获的动态控制具有多种应用潜力,包括记忆相关功能以及用于深度学习和人工智能的神经形态电路中神经元的仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Gaussian defect density variations on electrical characteristics of TIPS-pentacene-based OTFT

Effect of Gaussian defect density variations on electrical characteristics of TIPS-pentacene-based OTFT

This paper presents the influence of changes in the density of deep (Gaussian) defects, their energetic position, and width on key electrical parameters, including threshold voltage, current on–off ratio, and maximum transconductance in TIPS-pentacene-based organic thin-film transistors (OTFTs). Due to intrinsic disorder, organic semiconductors function with a Gaussian density of states governing the movement and injection of charge carriers within these materials. Our study reveals the presence of deep acceptor and donor density of states within the band gap of the TIPS-pentacene can significantly affect the performance of OTFTs. When the Gaussian acceptor (\(N_{\textrm{GA}}\)) value is \(1\times 10^{15}\,{\textrm{cm}}^{-3}\,{\textrm{eV}}^{-1}\), the current on–off ratio (\(I_{\textrm{on}}/I_{\textrm{off}}\)) is at its peak, reaching \(2.3\times 10^7\), and the mobility is notably high at \(0.0270\, {\textrm{cm}}^{2}\,{\textrm{V}}^{-1}\,{\textrm{S}}^{-1}\). In the case of the Gaussian donor (\(N_{\textrm{GD}}\)) with a value of \(1\times 10^{17}\,{\textrm{cm}}^{-3}\,{\textrm{eV}}^{-1}\), the current on–off ratio (\(I_{\textrm{on}}/I_{\textrm{off}}\)) reaches its peak at \(7.9\times 10^7\), and the lowest threshold voltage (\(V_{\textrm{th}}\)) is at 1.26 V. For the acceptor-like Gaussian decay energy (\(W_{\textrm{GA}}\)) with a value of 0.1 eV, the current on–off ratio (\(I_{\textrm{on}}/I_{\textrm{off}}\)) peaks at \(2.4\times 10^5\). The dynamic control of charge trapping in this context holds the potential for various applications, including memory-related functions and the emulation of neurons in neuromorphic circuits for deep learning and artificial intelligence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrical Engineering
Electrical Engineering 工程技术-工程:电子与电气
CiteScore
3.60
自引率
16.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: The journal “Electrical Engineering” following the long tradition of Archiv für Elektrotechnik publishes original papers of archival value in electrical engineering with a strong focus on electric power systems, smart grid approaches to power transmission and distribution, power system planning, operation and control, electricity markets, renewable power generation, microgrids, power electronics, electrical machines and drives, electric vehicles, railway electrification systems and electric transportation infrastructures, energy storage in electric power systems and vehicles, high voltage engineering, electromagnetic transients in power networks, lightning protection, electrical safety, electrical insulation systems, apparatus, devices, and components. Manuscripts describing theoretical, computer application and experimental research results are welcomed. Electrical Engineering - Archiv für Elektrotechnik is published in agreement with Verband der Elektrotechnik Elektronik Informationstechnik eV (VDE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信