霍普夫代数的纤维函数和重构

Simon Lentner, Martín Mombelli
{"title":"霍普夫代数的纤维函数和重构","authors":"Simon Lentner, Martín Mombelli","doi":"10.4153/s0008414x24000531","DOIUrl":null,"url":null,"abstract":"<p>The main objective of the present paper is to present a version of the Tannaka–Krein type reconstruction theorems: if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155856085-0229:S0008414X24000531:S0008414X24000531_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$F:{\\mathcal B}\\to {\\mathcal C}$</span></span></img></span></span> is an exact faithful monoidal functor of tensor categories, one would like to realize <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155856085-0229:S0008414X24000531:S0008414X24000531_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal B}$</span></span></img></span></span> as category of representations of a braided Hopf algebra <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155856085-0229:S0008414X24000531:S0008414X24000531_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$H(F)$</span></span></img></span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155856085-0229:S0008414X24000531:S0008414X24000531_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal C}$</span></span></img></span></span>. We prove that this is the case iff <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155856085-0229:S0008414X24000531:S0008414X24000531_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal B}$</span></span></img></span></span> has the additional structure of a monoidal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155856085-0229:S0008414X24000531:S0008414X24000531_inline6.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal C}$</span></span></img></span></span>-module category compatible with <span>F</span>, which equivalently means that <span>F</span> admits a monoidal section. For Hopf algebras, this reduces to a version of the Radford projection theorem. The Hopf algebra is constructed through the relative coend for module categories. We expect this basic result to have a wide range of applications, in particular in the absence of fiber functors, and we give some applications. One particular motivation was the logarithmic Kazhdan–Lusztig conjecture.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fiber functors and reconstruction of Hopf algebras\",\"authors\":\"Simon Lentner, Martín Mombelli\",\"doi\":\"10.4153/s0008414x24000531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The main objective of the present paper is to present a version of the Tannaka–Krein type reconstruction theorems: if <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155856085-0229:S0008414X24000531:S0008414X24000531_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$F:{\\\\mathcal B}\\\\to {\\\\mathcal C}$</span></span></img></span></span> is an exact faithful monoidal functor of tensor categories, one would like to realize <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155856085-0229:S0008414X24000531:S0008414X24000531_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal B}$</span></span></img></span></span> as category of representations of a braided Hopf algebra <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155856085-0229:S0008414X24000531:S0008414X24000531_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$H(F)$</span></span></img></span></span> in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155856085-0229:S0008414X24000531:S0008414X24000531_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal C}$</span></span></img></span></span>. We prove that this is the case iff <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155856085-0229:S0008414X24000531:S0008414X24000531_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal B}$</span></span></img></span></span> has the additional structure of a monoidal <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155856085-0229:S0008414X24000531:S0008414X24000531_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal C}$</span></span></img></span></span>-module category compatible with <span>F</span>, which equivalently means that <span>F</span> admits a monoidal section. For Hopf algebras, this reduces to a version of the Radford projection theorem. The Hopf algebra is constructed through the relative coend for module categories. We expect this basic result to have a wide range of applications, in particular in the absence of fiber functors, and we give some applications. One particular motivation was the logarithmic Kazhdan–Lusztig conjecture.</p>\",\"PeriodicalId\":501820,\"journal\":{\"name\":\"Canadian Journal of Mathematics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x24000531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是提出塔纳卡-克莱因类型重构定理的一个版本:如果 $F:{\mathcal B}\to {\mathcal C}$ 是张量范畴的一个精确忠实单环函子,那么我们希望把 ${\mathcal B}$ 实现为在 ${\mathcal C}$ 中的编织霍普夫代数 $H(F)$ 的表示范畴。我们证明,如果 ${mathcal B}$ 具有与 F 兼容的单环 ${mathcal C}$ 模块范畴的附加结构,这就意味着 F 允许一个单环部分。对于霍普夫代数,这可以简化为拉德福德投影定理的一个版本。霍普夫代数是通过模块范畴的相对共元来构造的。我们希望这一基本结果能有广泛的应用,特别是在没有纤维函数的情况下,我们给出了一些应用。其中一个特别的动机是对数卡兹丹-卢兹蒂格猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fiber functors and reconstruction of Hopf algebras

The main objective of the present paper is to present a version of the Tannaka–Krein type reconstruction theorems: if $F:{\mathcal B}\to {\mathcal C}$ is an exact faithful monoidal functor of tensor categories, one would like to realize ${\mathcal B}$ as category of representations of a braided Hopf algebra $H(F)$ in ${\mathcal C}$. We prove that this is the case iff ${\mathcal B}$ has the additional structure of a monoidal ${\mathcal C}$-module category compatible with F, which equivalently means that F admits a monoidal section. For Hopf algebras, this reduces to a version of the Radford projection theorem. The Hopf algebra is constructed through the relative coend for module categories. We expect this basic result to have a wide range of applications, in particular in the absence of fiber functors, and we give some applications. One particular motivation was the logarithmic Kazhdan–Lusztig conjecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信