{"title":"带集中绕组和混合铁芯的永磁爪极机的设计与优化","authors":"Chengcheng Liu, Hongming Zhang, Dianli Lv, Feng Niu, Gang Lei, Youhua Wang, Jianguo Zhu","doi":"10.1007/s00202-024-02604-4","DOIUrl":null,"url":null,"abstract":"<p>With the performance of soft magnetic composite (SMC) improves, there is a trend to develop permanent magnet claw pole machine (PMCPM) by using SMC cores in the past decades, as it is with complex 3D magnetic flux path. The traditional PMCPM (TPMCPM) needs to form the three phase operation by stacking three single phase modules in the axial direction, and each of them needs to be shifted with 120 degrees electrically to each other. In this paper, a PMCPM with concentrated winding (CWCPM) is proposed to overcome above constraints of the TPMCPM. Furthermore, the shielding layer is employed for reducing the flux leakage of CWCPM, and thus the performance of SL-CWCPM is improved. Considering these machines are with many design parameters, the multilevel sequential Taguchi method is employed and the sensitivity method with correction coefficient is employed for divide these design parameters into three groups. Lastly, the hybrid silicon sheet and SMC cores are employed to increase the performance of CWCPM, and the concept of the hybrid material magnetic core for the PMCPM is verified by the experiment.</p>","PeriodicalId":50546,"journal":{"name":"Electrical Engineering","volume":"4 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and optimization of a permanent magnet claw pole machine with concentrated winding and hybrid cores\",\"authors\":\"Chengcheng Liu, Hongming Zhang, Dianli Lv, Feng Niu, Gang Lei, Youhua Wang, Jianguo Zhu\",\"doi\":\"10.1007/s00202-024-02604-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the performance of soft magnetic composite (SMC) improves, there is a trend to develop permanent magnet claw pole machine (PMCPM) by using SMC cores in the past decades, as it is with complex 3D magnetic flux path. The traditional PMCPM (TPMCPM) needs to form the three phase operation by stacking three single phase modules in the axial direction, and each of them needs to be shifted with 120 degrees electrically to each other. In this paper, a PMCPM with concentrated winding (CWCPM) is proposed to overcome above constraints of the TPMCPM. Furthermore, the shielding layer is employed for reducing the flux leakage of CWCPM, and thus the performance of SL-CWCPM is improved. Considering these machines are with many design parameters, the multilevel sequential Taguchi method is employed and the sensitivity method with correction coefficient is employed for divide these design parameters into three groups. Lastly, the hybrid silicon sheet and SMC cores are employed to increase the performance of CWCPM, and the concept of the hybrid material magnetic core for the PMCPM is verified by the experiment.</p>\",\"PeriodicalId\":50546,\"journal\":{\"name\":\"Electrical Engineering\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00202-024-02604-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00202-024-02604-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design and optimization of a permanent magnet claw pole machine with concentrated winding and hybrid cores
With the performance of soft magnetic composite (SMC) improves, there is a trend to develop permanent magnet claw pole machine (PMCPM) by using SMC cores in the past decades, as it is with complex 3D magnetic flux path. The traditional PMCPM (TPMCPM) needs to form the three phase operation by stacking three single phase modules in the axial direction, and each of them needs to be shifted with 120 degrees electrically to each other. In this paper, a PMCPM with concentrated winding (CWCPM) is proposed to overcome above constraints of the TPMCPM. Furthermore, the shielding layer is employed for reducing the flux leakage of CWCPM, and thus the performance of SL-CWCPM is improved. Considering these machines are with many design parameters, the multilevel sequential Taguchi method is employed and the sensitivity method with correction coefficient is employed for divide these design parameters into three groups. Lastly, the hybrid silicon sheet and SMC cores are employed to increase the performance of CWCPM, and the concept of the hybrid material magnetic core for the PMCPM is verified by the experiment.
期刊介绍:
The journal “Electrical Engineering” following the long tradition of Archiv für Elektrotechnik publishes original papers of archival value in electrical engineering with a strong focus on electric power systems, smart grid approaches to power transmission and distribution, power system planning, operation and control, electricity markets, renewable power generation, microgrids, power electronics, electrical machines and drives, electric vehicles, railway electrification systems and electric transportation infrastructures, energy storage in electric power systems and vehicles, high voltage engineering, electromagnetic transients in power networks, lightning protection, electrical safety, electrical insulation systems, apparatus, devices, and components. Manuscripts describing theoretical, computer application and experimental research results are welcomed.
Electrical Engineering - Archiv für Elektrotechnik is published in agreement with Verband der Elektrotechnik Elektronik Informationstechnik eV (VDE).