分数薛定谔方程中具有高阶频谱相位调制的 Airyprime 光束动力学

IF 1.2 4区 物理与天体物理 Q4 OPTICS
Shoukui Zhao, Juncen Li, Tianqi Li, Xianwei Huang, Yanfeng Bai, Xiquan Fu
{"title":"分数薛定谔方程中具有高阶频谱相位调制的 Airyprime 光束动力学","authors":"Shoukui Zhao, Juncen Li, Tianqi Li, Xianwei Huang, Yanfeng Bai, Xiquan Fu","doi":"10.1088/1555-6611/ad6d4d","DOIUrl":null,"url":null,"abstract":"In this paper, the effects of spectral phase modulation on propagation characteristics of Airyprime beams modeled by fractional Schrödinger equation are studied, and the propagation dynamics of Airyprime beams are analyzed. It is found that the second and third-order spectral phase modulation significantly affect the beams dynamics. For the second-order spectral phase modulation, an increase in the Lévy index leads to a forward shift of the peak position, and the peak intensity increases for the positive spectral modulation coefficient, while the opposite tendency of the peak intensity is found for the negative spectral modulation coefficient. In addition, the appearance of multiple peaks depends on the positive modulation coefficient. For the third-order spectral phase modulation, the peak intensity increases under the larger spectral phase modulation coefficient with the backward shift of the maximum peak position, and an increase of the Lévy index results in the forward shift of the focusing position. The results show potential applications of Airyprime beams in various fields such as optical controlling and manipulation.","PeriodicalId":17976,"journal":{"name":"Laser Physics","volume":"69 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Airyprime beams with higher-order spectral phase modulation in the fractional Schrödinger equation\",\"authors\":\"Shoukui Zhao, Juncen Li, Tianqi Li, Xianwei Huang, Yanfeng Bai, Xiquan Fu\",\"doi\":\"10.1088/1555-6611/ad6d4d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the effects of spectral phase modulation on propagation characteristics of Airyprime beams modeled by fractional Schrödinger equation are studied, and the propagation dynamics of Airyprime beams are analyzed. It is found that the second and third-order spectral phase modulation significantly affect the beams dynamics. For the second-order spectral phase modulation, an increase in the Lévy index leads to a forward shift of the peak position, and the peak intensity increases for the positive spectral modulation coefficient, while the opposite tendency of the peak intensity is found for the negative spectral modulation coefficient. In addition, the appearance of multiple peaks depends on the positive modulation coefficient. For the third-order spectral phase modulation, the peak intensity increases under the larger spectral phase modulation coefficient with the backward shift of the maximum peak position, and an increase of the Lévy index results in the forward shift of the focusing position. The results show potential applications of Airyprime beams in various fields such as optical controlling and manipulation.\",\"PeriodicalId\":17976,\"journal\":{\"name\":\"Laser Physics\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1555-6611/ad6d4d\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1555-6611/ad6d4d","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了谱相位调制对以分数薛定谔方程建模的 Airyprime 光束传播特性的影响,并分析了 Airyprime 光束的传播动力学。研究发现,二阶和三阶频谱相位调制对光束的动态影响很大。对于二阶光谱相位调制,Lévy 指数的增加会导致峰值位置前移,光谱调制系数为正时,峰值强度会增加,而光谱调制系数为负时,峰值强度会出现相反的趋势。此外,多峰的出现取决于正调制系数。对于三阶光谱相位调制,光谱相位调制系数越大,峰值强度越大,最大峰值位置后移,莱维指数的增加导致聚焦位置前移。研究结果表明,Airyprime 光束在光学控制和操纵等多个领域都有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of Airyprime beams with higher-order spectral phase modulation in the fractional Schrödinger equation
In this paper, the effects of spectral phase modulation on propagation characteristics of Airyprime beams modeled by fractional Schrödinger equation are studied, and the propagation dynamics of Airyprime beams are analyzed. It is found that the second and third-order spectral phase modulation significantly affect the beams dynamics. For the second-order spectral phase modulation, an increase in the Lévy index leads to a forward shift of the peak position, and the peak intensity increases for the positive spectral modulation coefficient, while the opposite tendency of the peak intensity is found for the negative spectral modulation coefficient. In addition, the appearance of multiple peaks depends on the positive modulation coefficient. For the third-order spectral phase modulation, the peak intensity increases under the larger spectral phase modulation coefficient with the backward shift of the maximum peak position, and an increase of the Lévy index results in the forward shift of the focusing position. The results show potential applications of Airyprime beams in various fields such as optical controlling and manipulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Laser Physics
Laser Physics 物理-光学
CiteScore
2.60
自引率
8.30%
发文量
127
审稿时长
2.2 months
期刊介绍: Laser Physics offers a comprehensive view of theoretical and experimental laser research and applications. Articles cover every aspect of modern laser physics and quantum electronics, emphasizing physical effects in various media (solid, gaseous, liquid) leading to the generation of laser radiation; peculiarities of propagation of laser radiation; problems involving impact of laser radiation on various substances and the emerging physical effects, including coherent ones; the applied use of lasers and laser spectroscopy; the processing and storage of information; and more. The full list of subject areas covered is as follows: -physics of lasers- fibre optics and fibre lasers- quantum optics and quantum information science- ultrafast optics and strong-field physics- nonlinear optics- physics of cold trapped atoms- laser methods in chemistry, biology, medicine and ecology- laser spectroscopy- novel laser materials and lasers- optics of nanomaterials- interaction of laser radiation with matter- laser interaction with solids- photonics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信