利用时间分数塔尔博特效应产生脉冲并倍增其重复率

IF 1.2 4区 物理与天体物理 Q4 OPTICS
Rustem Shakhmuratov
{"title":"利用时间分数塔尔博特效应产生脉冲并倍增其重复率","authors":"Rustem Shakhmuratov","doi":"10.1088/1555-6611/ad6d4f","DOIUrl":null,"url":null,"abstract":"The generation of pulses from a periodic phase-modulated continuous wave (CW) laser field, which is transmitted through a group-delay-dispersion (GDD) circuit, is considered. A time lens (TL), consisting of a quadratic phase modulator and a GDD circuit is proposed in combination with temporal array illuminators (TAI) using another GDD circuit. The time lens producing field compression into pulses is realized for a particular value of the normalized fractional Talbot length (NFTL) <inline-formula>\n<tex-math><?CDATA $L/L_{T} = P_{1}/Q_{1}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>L</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:msub><mml:mi>L</mml:mi><mml:mrow><mml:mi>T</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:msub><mml:mi>P</mml:mi><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:msub><mml:mi>Q</mml:mi><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"lpad6d4fieqn1.gif\"></inline-graphic></inline-formula>, where <italic toggle=\"yes\">L</italic> is the physical length of the GDD circuit, <italic toggle=\"yes\">L</italic><sub><italic toggle=\"yes\">T</italic></sub> is the Talbot length, <inline-formula>\n<tex-math><?CDATA $P_{1} = 1$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>P</mml:mi><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"lpad6d4fieqn2.gif\"></inline-graphic></inline-formula>, and <italic toggle=\"yes\">Q</italic><sub>1</sub> is an integer. The length of the GDD circuit is selected to convert a given parabolic phase-modulated CW laser field into short pulses repeated with a phase modulation period <italic toggle=\"yes\">T</italic> in accordance with the chirp radar concept. If NFTL is increased by <inline-formula>\n<tex-math><?CDATA $1/Q_{2}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mn>1</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:msub><mml:mi>Q</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"lpad6d4fieqn3.gif\"></inline-graphic></inline-formula>, where <inline-formula>\n<tex-math><?CDATA $Q_{2} = 4$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>Q</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"lpad6d4fieqn4.gif\"></inline-graphic></inline-formula>, 6, or 8, the pulse sequence period is shortened as <inline-formula>\n<tex-math><?CDATA $T/2$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>T</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"lpad6d4fieqn5.gif\"></inline-graphic></inline-formula>, <inline-formula>\n<tex-math><?CDATA $T/3$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>T</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"lpad6d4fieqn6.gif\"></inline-graphic></inline-formula>, and <inline-formula>\n<tex-math><?CDATA $T/4$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>T</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"lpad6d4fieqn7.gif\"></inline-graphic></inline-formula>, respectively. This is because the additional GDD circuit with NFTL <inline-formula>\n<tex-math><?CDATA $1/Q_{2}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mn>1</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:msub><mml:mi>Q</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"lpad6d4fieqn8.gif\"></inline-graphic></inline-formula>, performs repetition rate multiplication of the initially prepared pulse sequence as TAI does. The maximum multiplication number considered in this paper is 12, which makes it possible to reduce the time interval between pulses by a factor of 12 and obtain a repetition rate 120 GHZ of picosecond pulses generated by phase modulation with frequency <inline-formula>\n<tex-math><?CDATA $f = 1/T = 10$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>f</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mi>T</mml:mi><mml:mo>=</mml:mo><mml:mn>10</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"lpad6d4fieqn9.gif\"></inline-graphic></inline-formula> GHz. The proposed method of pulse sequence generation with a discretely tunable period provides a new tool for optical signal processing in optical communication.","PeriodicalId":17976,"journal":{"name":"Laser Physics","volume":"69 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of pulses and multiplying their repetition rate using the temporal fractional Talbot effect\",\"authors\":\"Rustem Shakhmuratov\",\"doi\":\"10.1088/1555-6611/ad6d4f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generation of pulses from a periodic phase-modulated continuous wave (CW) laser field, which is transmitted through a group-delay-dispersion (GDD) circuit, is considered. A time lens (TL), consisting of a quadratic phase modulator and a GDD circuit is proposed in combination with temporal array illuminators (TAI) using another GDD circuit. The time lens producing field compression into pulses is realized for a particular value of the normalized fractional Talbot length (NFTL) <inline-formula>\\n<tex-math><?CDATA $L/L_{T} = P_{1}/Q_{1}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>L</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:msub><mml:mi>L</mml:mi><mml:mrow><mml:mi>T</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:msub><mml:mi>P</mml:mi><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:msub><mml:mi>Q</mml:mi><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"lpad6d4fieqn1.gif\\\"></inline-graphic></inline-formula>, where <italic toggle=\\\"yes\\\">L</italic> is the physical length of the GDD circuit, <italic toggle=\\\"yes\\\">L</italic><sub><italic toggle=\\\"yes\\\">T</italic></sub> is the Talbot length, <inline-formula>\\n<tex-math><?CDATA $P_{1} = 1$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>P</mml:mi><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\\\"lpad6d4fieqn2.gif\\\"></inline-graphic></inline-formula>, and <italic toggle=\\\"yes\\\">Q</italic><sub>1</sub> is an integer. The length of the GDD circuit is selected to convert a given parabolic phase-modulated CW laser field into short pulses repeated with a phase modulation period <italic toggle=\\\"yes\\\">T</italic> in accordance with the chirp radar concept. If NFTL is increased by <inline-formula>\\n<tex-math><?CDATA $1/Q_{2}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mn>1</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:msub><mml:mi>Q</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"lpad6d4fieqn3.gif\\\"></inline-graphic></inline-formula>, where <inline-formula>\\n<tex-math><?CDATA $Q_{2} = 4$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>Q</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\\\"lpad6d4fieqn4.gif\\\"></inline-graphic></inline-formula>, 6, or 8, the pulse sequence period is shortened as <inline-formula>\\n<tex-math><?CDATA $T/2$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>T</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\\\"lpad6d4fieqn5.gif\\\"></inline-graphic></inline-formula>, <inline-formula>\\n<tex-math><?CDATA $T/3$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>T</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\\\"lpad6d4fieqn6.gif\\\"></inline-graphic></inline-formula>, and <inline-formula>\\n<tex-math><?CDATA $T/4$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>T</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\\\"lpad6d4fieqn7.gif\\\"></inline-graphic></inline-formula>, respectively. This is because the additional GDD circuit with NFTL <inline-formula>\\n<tex-math><?CDATA $1/Q_{2}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mn>1</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:msub><mml:mi>Q</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"lpad6d4fieqn8.gif\\\"></inline-graphic></inline-formula>, performs repetition rate multiplication of the initially prepared pulse sequence as TAI does. The maximum multiplication number considered in this paper is 12, which makes it possible to reduce the time interval between pulses by a factor of 12 and obtain a repetition rate 120 GHZ of picosecond pulses generated by phase modulation with frequency <inline-formula>\\n<tex-math><?CDATA $f = 1/T = 10$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>f</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mi>T</mml:mi><mml:mo>=</mml:mo><mml:mn>10</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\\\"lpad6d4fieqn9.gif\\\"></inline-graphic></inline-formula> GHz. The proposed method of pulse sequence generation with a discretely tunable period provides a new tool for optical signal processing in optical communication.\",\"PeriodicalId\":17976,\"journal\":{\"name\":\"Laser Physics\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1555-6611/ad6d4f\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1555-6611/ad6d4f","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

研究考虑了周期性相位调制连续波(CW)激光场通过群延迟色散(GDD)电路产生脉冲的问题。提出了一种由二次相位调制器和 GDD 电路组成的时间透镜 (TL),该透镜与使用另一个 GDD 电路的时序阵列照明器 (TAI) 相结合。在归一化分数塔尔博特长度(NFTL)L/LT=P1/Q1 的特定值下,时间透镜可将场强压缩为脉冲,其中 L 为 GDD 电路的物理长度,LT 为塔尔博特长度,P1=1,Q1 为整数。根据啁啾雷达的概念,选择 GDD 电路的长度是为了将给定的抛物线相位调制 CW 激光场转换成以相位调制周期 T 重复的短脉冲。如果 NFTL 增加 1/Q2,其中 Q2=4、6 或 8,脉冲序列周期将分别缩短为 T/2、T/3 和 T/4。这是因为 NFTL 为 1/Q2 的附加 GDD 电路会像 TAI 一样对最初准备好的脉冲序列进行重复率倍增。本文考虑的最大倍增数为 12,因此可以将脉冲之间的时间间隔缩短 12 倍,并通过频率 f=1/T=10 GHz 的相位调制产生重复率为 120 GHZ 的皮秒脉冲。所提出的具有离散可调周期的脉冲序列生成方法为光通信中的光信号处理提供了一种新工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation of pulses and multiplying their repetition rate using the temporal fractional Talbot effect
The generation of pulses from a periodic phase-modulated continuous wave (CW) laser field, which is transmitted through a group-delay-dispersion (GDD) circuit, is considered. A time lens (TL), consisting of a quadratic phase modulator and a GDD circuit is proposed in combination with temporal array illuminators (TAI) using another GDD circuit. The time lens producing field compression into pulses is realized for a particular value of the normalized fractional Talbot length (NFTL) L/LT=P1/Q1, where L is the physical length of the GDD circuit, LT is the Talbot length, P1=1, and Q1 is an integer. The length of the GDD circuit is selected to convert a given parabolic phase-modulated CW laser field into short pulses repeated with a phase modulation period T in accordance with the chirp radar concept. If NFTL is increased by 1/Q2, where Q2=4, 6, or 8, the pulse sequence period is shortened as T/2, T/3, and T/4, respectively. This is because the additional GDD circuit with NFTL 1/Q2, performs repetition rate multiplication of the initially prepared pulse sequence as TAI does. The maximum multiplication number considered in this paper is 12, which makes it possible to reduce the time interval between pulses by a factor of 12 and obtain a repetition rate 120 GHZ of picosecond pulses generated by phase modulation with frequency f=1/T=10 GHz. The proposed method of pulse sequence generation with a discretely tunable period provides a new tool for optical signal processing in optical communication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Laser Physics
Laser Physics 物理-光学
CiteScore
2.60
自引率
8.30%
发文量
127
审稿时长
2.2 months
期刊介绍: Laser Physics offers a comprehensive view of theoretical and experimental laser research and applications. Articles cover every aspect of modern laser physics and quantum electronics, emphasizing physical effects in various media (solid, gaseous, liquid) leading to the generation of laser radiation; peculiarities of propagation of laser radiation; problems involving impact of laser radiation on various substances and the emerging physical effects, including coherent ones; the applied use of lasers and laser spectroscopy; the processing and storage of information; and more. The full list of subject areas covered is as follows: -physics of lasers- fibre optics and fibre lasers- quantum optics and quantum information science- ultrafast optics and strong-field physics- nonlinear optics- physics of cold trapped atoms- laser methods in chemistry, biology, medicine and ecology- laser spectroscopy- novel laser materials and lasers- optics of nanomaterials- interaction of laser radiation with matter- laser interaction with solids- photonics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信