高维监测方法综合评述:趋势、见解和相互联系

IF 2.3 2区 工程技术 Q3 ENGINEERING, INDUSTRIAL
Fuhad Ahmed, Tahir Mahmood, Muhammad Riaz, Nasir Abbas
{"title":"高维监测方法综合评述:趋势、见解和相互联系","authors":"Fuhad Ahmed, Tahir Mahmood, Muhammad Riaz, Nasir Abbas","doi":"10.1080/16843703.2024.2395745","DOIUrl":null,"url":null,"abstract":"High-dimensional data refers to a dataset that contains many variables or features, typically with many more features p than observations n (i.e. n<p). With technological advancements in sensors, h...","PeriodicalId":49133,"journal":{"name":"Quality Technology and Quantitative Management","volume":"21 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive review of high-dimensional monitoring methods: trends, insights, and interconnections\",\"authors\":\"Fuhad Ahmed, Tahir Mahmood, Muhammad Riaz, Nasir Abbas\",\"doi\":\"10.1080/16843703.2024.2395745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-dimensional data refers to a dataset that contains many variables or features, typically with many more features p than observations n (i.e. n<p). With technological advancements in sensors, h...\",\"PeriodicalId\":49133,\"journal\":{\"name\":\"Quality Technology and Quantitative Management\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality Technology and Quantitative Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/16843703.2024.2395745\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Technology and Quantitative Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/16843703.2024.2395745","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

高维数据是指包含许多变量或特征的数据集,通常特征 p 多于观测值 n(即 n本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Comprehensive review of high-dimensional monitoring methods: trends, insights, and interconnections
High-dimensional data refers to a dataset that contains many variables or features, typically with many more features p than observations n (i.e. n
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quality Technology and Quantitative Management
Quality Technology and Quantitative Management ENGINEERING, INDUSTRIAL-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
5.10
自引率
21.40%
发文量
47
审稿时长
>12 weeks
期刊介绍: Quality Technology and Quantitative Management is an international refereed journal publishing original work in quality, reliability, queuing service systems, applied statistics (including methodology, data analysis, simulation), and their applications in business and industrial management. The journal publishes both theoretical and applied research articles using statistical methods or presenting new results, which solve or have the potential to solve real-world management problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信