揭开社交网络宗族的面纱:利用 SVM 神经分类器和增强内核改进家谱宗族分类

S. N. Deepa, Karam Ratan Singh, Arun Joram
{"title":"揭开社交网络宗族的面纱:利用 SVM 神经分类器和增强内核改进家谱宗族分类","authors":"S. N. Deepa, Karam Ratan Singh, Arun Joram","doi":"10.1007/s41870-024-02183-4","DOIUrl":null,"url":null,"abstract":"<p>In this study, we developed a variant of the support vector machine (SVM) neural classifier and utilized it to categorize clans in a genealogical dataset. For each of the five kernels, all four variants, twin SVM (TSVM), proximal SVM (PSVM), twin proximal SVM (TPSVM), and multi-class SVM (MCSVM) classifier are simulated and tested. The analysis of variance - radial basis function (ANOVA RBF) kernel outperformed all other SVM variants, in terms of classification accuracy with the lowest error value. Additionally, it is found that for the considered dataset, TPSVM neural classifier with ANOVA RBF Kernel generated 98.91% classification accuracy, and the TPSVM classifier has achieved the minimized mean square error (MSE) value of 0.00015. The Twin Proximal SVM classifier has produced enhanced classification accuracy with better precision and F1-score in comparison to all other developed and simulated SVM classifier models.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling social network clans: improving genealogical clan classification with SVM neural classifiers and enhanced kernels\",\"authors\":\"S. N. Deepa, Karam Ratan Singh, Arun Joram\",\"doi\":\"10.1007/s41870-024-02183-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we developed a variant of the support vector machine (SVM) neural classifier and utilized it to categorize clans in a genealogical dataset. For each of the five kernels, all four variants, twin SVM (TSVM), proximal SVM (PSVM), twin proximal SVM (TPSVM), and multi-class SVM (MCSVM) classifier are simulated and tested. The analysis of variance - radial basis function (ANOVA RBF) kernel outperformed all other SVM variants, in terms of classification accuracy with the lowest error value. Additionally, it is found that for the considered dataset, TPSVM neural classifier with ANOVA RBF Kernel generated 98.91% classification accuracy, and the TPSVM classifier has achieved the minimized mean square error (MSE) value of 0.00015. The Twin Proximal SVM classifier has produced enhanced classification accuracy with better precision and F1-score in comparison to all other developed and simulated SVM classifier models.</p>\",\"PeriodicalId\":14138,\"journal\":{\"name\":\"International Journal of Information Technology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41870-024-02183-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02183-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们开发了支持向量机(SVM)神经分类器的变体,并利用它对家谱数据集中的宗族进行分类。我们对五个内核的所有四个变体,即孪生 SVM(TSVM)、近端 SVM(PSVM)、孪生近端 SVM(TPSVM)和多类 SVM(MCSVM)分类器进行了模拟和测试。方差分析-径向基函数(ANOVA RBF)核在分类准确性方面优于所有其他 SVM 变体,误差值最低。此外,对于所考虑的数据集,使用 ANOVA RBF 内核的 TPSVM 神经分类器的分类准确率为 98.91%,TPSVM 分类器的均方误差(MSE)最小,仅为 0.00015。与所有其他已开发和模拟的 SVM 分类器模型相比,Twin Proximal SVM 分类器的分类准确率更高,精度和 F1 分数也更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling social network clans: improving genealogical clan classification with SVM neural classifiers and enhanced kernels

Unveiling social network clans: improving genealogical clan classification with SVM neural classifiers and enhanced kernels

In this study, we developed a variant of the support vector machine (SVM) neural classifier and utilized it to categorize clans in a genealogical dataset. For each of the five kernels, all four variants, twin SVM (TSVM), proximal SVM (PSVM), twin proximal SVM (TPSVM), and multi-class SVM (MCSVM) classifier are simulated and tested. The analysis of variance - radial basis function (ANOVA RBF) kernel outperformed all other SVM variants, in terms of classification accuracy with the lowest error value. Additionally, it is found that for the considered dataset, TPSVM neural classifier with ANOVA RBF Kernel generated 98.91% classification accuracy, and the TPSVM classifier has achieved the minimized mean square error (MSE) value of 0.00015. The Twin Proximal SVM classifier has produced enhanced classification accuracy with better precision and F1-score in comparison to all other developed and simulated SVM classifier models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信