小儿脑瘫康复期间步态评估的改进聚类技术

Prateek Singhal, Rakesh Kumar Yadav
{"title":"小儿脑瘫康复期间步态评估的改进聚类技术","authors":"Prateek Singhal, Rakesh Kumar Yadav","doi":"10.1007/s41870-024-02115-2","DOIUrl":null,"url":null,"abstract":"<p>The gait abnormality may be the cause of various diseases like foot drop, lower back trembling, and osteoarthritis in the human body. The causes may affect body performance. The problem may be solved if we notice it between the ages of 2 and 20. Today's medical research struggles to identify normality and abnormality in children at a young age. The gait abnormalities depend on a complex neurological condition called cerebral palsy. The article proposes an improved fuzzy C-mean-PSO technique and also defines selection criteria for gait patterns, such as optimal number identification gait profiles, mean square error, silhouette coefficient, and Dunn index. The researcher used 156 patients’ data from the available O’Malley gait dataset for experimental purposes. We partitioned 156 patients into 5 different combinations. In the first two combinations, we applied conventional methods, and the next three employed proposed methods. Finally, we found the 91.6% CPI (Cluster Purity Index), that is greater than existing techniques. In the future, we can perform the proposed methods on various datasets. The findings indicate that employing clustering-based gait profiles improved fuzzy C-mean-PSO optimised using these methods can aid in measuring clinical rehabilitation for children with cerebral palsy.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved clustering techniques for paediatric cerebral palsy gait assessment during rehabilitation\",\"authors\":\"Prateek Singhal, Rakesh Kumar Yadav\",\"doi\":\"10.1007/s41870-024-02115-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The gait abnormality may be the cause of various diseases like foot drop, lower back trembling, and osteoarthritis in the human body. The causes may affect body performance. The problem may be solved if we notice it between the ages of 2 and 20. Today's medical research struggles to identify normality and abnormality in children at a young age. The gait abnormalities depend on a complex neurological condition called cerebral palsy. The article proposes an improved fuzzy C-mean-PSO technique and also defines selection criteria for gait patterns, such as optimal number identification gait profiles, mean square error, silhouette coefficient, and Dunn index. The researcher used 156 patients’ data from the available O’Malley gait dataset for experimental purposes. We partitioned 156 patients into 5 different combinations. In the first two combinations, we applied conventional methods, and the next three employed proposed methods. Finally, we found the 91.6% CPI (Cluster Purity Index), that is greater than existing techniques. In the future, we can perform the proposed methods on various datasets. The findings indicate that employing clustering-based gait profiles improved fuzzy C-mean-PSO optimised using these methods can aid in measuring clinical rehabilitation for children with cerebral palsy.</p>\",\"PeriodicalId\":14138,\"journal\":{\"name\":\"International Journal of Information Technology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41870-024-02115-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02115-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

步态异常可能是导致足下垂、腰部颤抖和人体骨关节炎等各种疾病的原因。这些原因可能会影响身体机能。如果我们在 2 岁到 20 岁之间就注意到这个问题,问题可能就会迎刃而解。当今的医学研究在努力辨别儿童幼年时的正常与异常。步态异常取决于一种名为脑瘫的复杂神经系统疾病。文章提出了一种改进的模糊 C-mean-PSO 技术,并定义了步态模式的选择标准,如识别步态轮廓的最佳数量、均方误差、轮廓系数和邓恩指数。研究人员使用了现有 O'Malley 步态数据集中的 156 名患者数据进行实验。我们将 156 名患者分成 5 个不同的组合。在前两个组合中,我们采用了传统方法,而后三个组合则采用了建议的方法。最后,我们发现群集纯度指数(CPI)达到 91.6%,高于现有技术。今后,我们可以在不同的数据集上执行建议的方法。研究结果表明,采用基于聚类的步态轮廓,并利用这些方法对模糊 C-mean-PSO 进行优化,可以帮助测量脑瘫儿童的临床康复情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improved clustering techniques for paediatric cerebral palsy gait assessment during rehabilitation

Improved clustering techniques for paediatric cerebral palsy gait assessment during rehabilitation

The gait abnormality may be the cause of various diseases like foot drop, lower back trembling, and osteoarthritis in the human body. The causes may affect body performance. The problem may be solved if we notice it between the ages of 2 and 20. Today's medical research struggles to identify normality and abnormality in children at a young age. The gait abnormalities depend on a complex neurological condition called cerebral palsy. The article proposes an improved fuzzy C-mean-PSO technique and also defines selection criteria for gait patterns, such as optimal number identification gait profiles, mean square error, silhouette coefficient, and Dunn index. The researcher used 156 patients’ data from the available O’Malley gait dataset for experimental purposes. We partitioned 156 patients into 5 different combinations. In the first two combinations, we applied conventional methods, and the next three employed proposed methods. Finally, we found the 91.6% CPI (Cluster Purity Index), that is greater than existing techniques. In the future, we can perform the proposed methods on various datasets. The findings indicate that employing clustering-based gait profiles improved fuzzy C-mean-PSO optimised using these methods can aid in measuring clinical rehabilitation for children with cerebral palsy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信