{"title":"基于模拟退火算法的渗流条件下冻结管道位置优化数值模拟研究","authors":"Renjie Song","doi":"10.1007/s12205-024-5845-z","DOIUrl":null,"url":null,"abstract":"<p>Artificial Ground Freezing (AGF) is a promising method for controlling seepage in permeable strata. However, AGF faces challenges, including difficulties in achieving a frozen barrier in high-flow conditions and concerns about cost-effectiveness. This study optimizes freezing pipe placement in AGF using a simulated annealing algorithm and a coupled hydrothermal finite element model, focusing on AGF system responses under varying seepage velocities. The optimized layout significantly reduces freeze-ring formation time (by 2.5 days) and the overall freezing duration (by 12.5 days). Moreover, it substantially decreases the required frozen soil volume, facilitating drilling and excavation. Across different seepage velocities, the difference in freeze-ring formation time between the optimized and uniform layouts gradually increases with higher seepage velocity, reaching a maximum difference of 5.9 days. Finally, the relationship between freezing time and seepage velocity was quantitatively described using exponential functions. This study underscores the critical role of optimizing freezing pipe placement in AGF, providing a foundation for efficient and cost-effective geotechnical engineering practices.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation Study on Optimization of Freezing Pipe Position under Seepage Conditions Based on Simulated Annealing Algorithm\",\"authors\":\"Renjie Song\",\"doi\":\"10.1007/s12205-024-5845-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Artificial Ground Freezing (AGF) is a promising method for controlling seepage in permeable strata. However, AGF faces challenges, including difficulties in achieving a frozen barrier in high-flow conditions and concerns about cost-effectiveness. This study optimizes freezing pipe placement in AGF using a simulated annealing algorithm and a coupled hydrothermal finite element model, focusing on AGF system responses under varying seepage velocities. The optimized layout significantly reduces freeze-ring formation time (by 2.5 days) and the overall freezing duration (by 12.5 days). Moreover, it substantially decreases the required frozen soil volume, facilitating drilling and excavation. Across different seepage velocities, the difference in freeze-ring formation time between the optimized and uniform layouts gradually increases with higher seepage velocity, reaching a maximum difference of 5.9 days. Finally, the relationship between freezing time and seepage velocity was quantitatively described using exponential functions. This study underscores the critical role of optimizing freezing pipe placement in AGF, providing a foundation for efficient and cost-effective geotechnical engineering practices.</p>\",\"PeriodicalId\":17897,\"journal\":{\"name\":\"KSCE Journal of Civil Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KSCE Journal of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-5845-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSCE Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-5845-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Numerical Simulation Study on Optimization of Freezing Pipe Position under Seepage Conditions Based on Simulated Annealing Algorithm
Artificial Ground Freezing (AGF) is a promising method for controlling seepage in permeable strata. However, AGF faces challenges, including difficulties in achieving a frozen barrier in high-flow conditions and concerns about cost-effectiveness. This study optimizes freezing pipe placement in AGF using a simulated annealing algorithm and a coupled hydrothermal finite element model, focusing on AGF system responses under varying seepage velocities. The optimized layout significantly reduces freeze-ring formation time (by 2.5 days) and the overall freezing duration (by 12.5 days). Moreover, it substantially decreases the required frozen soil volume, facilitating drilling and excavation. Across different seepage velocities, the difference in freeze-ring formation time between the optimized and uniform layouts gradually increases with higher seepage velocity, reaching a maximum difference of 5.9 days. Finally, the relationship between freezing time and seepage velocity was quantitatively described using exponential functions. This study underscores the critical role of optimizing freezing pipe placement in AGF, providing a foundation for efficient and cost-effective geotechnical engineering practices.
期刊介绍:
The KSCE Journal of Civil Engineering is a technical bimonthly journal of the Korean Society of Civil Engineers. The journal reports original study results (both academic and practical) on past practices and present information in all civil engineering fields.
The journal publishes original papers within the broad field of civil engineering, which includes, but are not limited to, the following: coastal and harbor engineering, construction management, environmental engineering, geotechnical engineering, highway engineering, hydraulic engineering, information technology, nuclear power engineering, railroad engineering, structural engineering, surveying and geo-spatial engineering, transportation engineering, tunnel engineering, and water resources and hydrologic engineering