Xiaofeng Han, Jiarun Feng, Penggang Wang, Yanru Wang, Li Tian
{"title":"碱激活炉渣在加热-冷却过程中的微观结构变化和相态演变","authors":"Xiaofeng Han, Jiarun Feng, Penggang Wang, Yanru Wang, Li Tian","doi":"10.1007/s12205-024-1379-7","DOIUrl":null,"url":null,"abstract":"<p>This article reports a study on the performance of the alkali activated slag (AAS) mortars upon exposing to the elevated temperatures. Two cooling methods (i.e., cooling in air and water-spring) were adopted following the heating treatment. The mechanical properties, durability, microstructure and phase evolution of AAS and OPC after heating-cooling process were researched. For AAS specimens, the compressive strength loss was smaller, but the flexural strength loss was greater compared to that of OPC specimens after undergoing the heating-cooling process. AAS specimens exhibited higher carbonation depth, and lower penetrated chloride ion. AAS-W specimens shows a higher resistance to cracks formation than OPC-W. With the heating temperature increased, the capillary pore proportion of AAS specimens gradually increased above 80% at 800°0;C. However, high content of transition pores and capillary pores were found at 800°0;C in OPC specimens. The new substances were generated when the temperature was 800°0;C for AAS specimens.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure Change and Phases Evolution of Alkali-Activated Slag upon Exposing to the Heating-Cooling Process\",\"authors\":\"Xiaofeng Han, Jiarun Feng, Penggang Wang, Yanru Wang, Li Tian\",\"doi\":\"10.1007/s12205-024-1379-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article reports a study on the performance of the alkali activated slag (AAS) mortars upon exposing to the elevated temperatures. Two cooling methods (i.e., cooling in air and water-spring) were adopted following the heating treatment. The mechanical properties, durability, microstructure and phase evolution of AAS and OPC after heating-cooling process were researched. For AAS specimens, the compressive strength loss was smaller, but the flexural strength loss was greater compared to that of OPC specimens after undergoing the heating-cooling process. AAS specimens exhibited higher carbonation depth, and lower penetrated chloride ion. AAS-W specimens shows a higher resistance to cracks formation than OPC-W. With the heating temperature increased, the capillary pore proportion of AAS specimens gradually increased above 80% at 800°0;C. However, high content of transition pores and capillary pores were found at 800°0;C in OPC specimens. The new substances were generated when the temperature was 800°0;C for AAS specimens.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-1379-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-1379-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructure Change and Phases Evolution of Alkali-Activated Slag upon Exposing to the Heating-Cooling Process
This article reports a study on the performance of the alkali activated slag (AAS) mortars upon exposing to the elevated temperatures. Two cooling methods (i.e., cooling in air and water-spring) were adopted following the heating treatment. The mechanical properties, durability, microstructure and phase evolution of AAS and OPC after heating-cooling process were researched. For AAS specimens, the compressive strength loss was smaller, but the flexural strength loss was greater compared to that of OPC specimens after undergoing the heating-cooling process. AAS specimens exhibited higher carbonation depth, and lower penetrated chloride ion. AAS-W specimens shows a higher resistance to cracks formation than OPC-W. With the heating temperature increased, the capillary pore proportion of AAS specimens gradually increased above 80% at 800°0;C. However, high content of transition pores and capillary pores were found at 800°0;C in OPC specimens. The new substances were generated when the temperature was 800°0;C for AAS specimens.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.