{"title":"用食人鱼觅食优化法优化超声图像中的甲状腺结节分类 SPGAN","authors":"Siddalingesh Bandi, Ravikumar K.P, Manjunatha Reddy H.S","doi":"10.1177/01617346241271240","DOIUrl":null,"url":null,"abstract":"In this research work, Semantic-Preserved Generative Adversarial Network optimized by Piranha Foraging Optimization for Thyroid Nodule Classification in Ultrasound Images (SPGAN-PFO-TNC-UI) is proposed. Initially, ultrasound images are gathered from the DDTI dataset. Then the input image is sent to the pre-processing step. During pre-processing stage, the Multi-Window Savitzky-Golay Filter (MWSGF) is employed to reduce the noise and improve the quality of the ultrasound (US) images. The pre-processed output is supplied to the Generalized Intuitionistic Fuzzy C-Means Clustering (GIFCMC). Here, the ultrasound image’s Region of Interest (ROI) is segmented. The segmentation output is supplied to the Fully Numerical Laplace Transform (FNLT) to extract the features, such as geometric features like solidity, orientation, roundness, main axis length, minor axis length, bounding box, convex area, and morphological features, like area, perimeter, aspect ratio, and AP ratio. The Semantic-Preserved Generative Adversarial Network (SPGAN) separates the image as benign or malignant nodules. Generally, SPGAN does not express any optimization adaptation methodologies for determining the best parameters to ensure the accurate classification of thyroid nodules. Therefore, the Piranha Foraging Optimization (PFO) algorithm is proposed to improve the SPGAN classifier and accurately identify the thyroid nodules. The metrics, like F-score, accuracy, error rate, precision, sensitivity, specificity, ROC, computing time is examined. The proposed SPGAN-PFO-TNC-UI method attains 30.54%, 21.30%, 27.40%, and 18.92% higher precision and 26.97%, 20.41%, 15.09%, and 18.27% lower error rate compared with existing techniques, like Thyroid detection and classification using DNN with Hybrid Meta-Heuristic and LSTM (TD-DL-HMH-LSTM), Quantum-Inspired convolutional neural networks for optimized thyroid nodule categorization (QCNN-OTNC), Thyroid nodules classification under Follow the Regularized Leader Optimization based Deep Neural Networks (CTN-FRL-DNN), Automatic classification of ultrasound thyroids images using vision transformers and generative adversarial networks (ACUTI-VT-GAN) respectively.","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPGAN Optimized by Piranha Foraging Optimization for Thyroid Nodule Classification in Ultrasound Images\",\"authors\":\"Siddalingesh Bandi, Ravikumar K.P, Manjunatha Reddy H.S\",\"doi\":\"10.1177/01617346241271240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research work, Semantic-Preserved Generative Adversarial Network optimized by Piranha Foraging Optimization for Thyroid Nodule Classification in Ultrasound Images (SPGAN-PFO-TNC-UI) is proposed. Initially, ultrasound images are gathered from the DDTI dataset. Then the input image is sent to the pre-processing step. During pre-processing stage, the Multi-Window Savitzky-Golay Filter (MWSGF) is employed to reduce the noise and improve the quality of the ultrasound (US) images. The pre-processed output is supplied to the Generalized Intuitionistic Fuzzy C-Means Clustering (GIFCMC). Here, the ultrasound image’s Region of Interest (ROI) is segmented. The segmentation output is supplied to the Fully Numerical Laplace Transform (FNLT) to extract the features, such as geometric features like solidity, orientation, roundness, main axis length, minor axis length, bounding box, convex area, and morphological features, like area, perimeter, aspect ratio, and AP ratio. The Semantic-Preserved Generative Adversarial Network (SPGAN) separates the image as benign or malignant nodules. Generally, SPGAN does not express any optimization adaptation methodologies for determining the best parameters to ensure the accurate classification of thyroid nodules. Therefore, the Piranha Foraging Optimization (PFO) algorithm is proposed to improve the SPGAN classifier and accurately identify the thyroid nodules. The metrics, like F-score, accuracy, error rate, precision, sensitivity, specificity, ROC, computing time is examined. The proposed SPGAN-PFO-TNC-UI method attains 30.54%, 21.30%, 27.40%, and 18.92% higher precision and 26.97%, 20.41%, 15.09%, and 18.27% lower error rate compared with existing techniques, like Thyroid detection and classification using DNN with Hybrid Meta-Heuristic and LSTM (TD-DL-HMH-LSTM), Quantum-Inspired convolutional neural networks for optimized thyroid nodule categorization (QCNN-OTNC), Thyroid nodules classification under Follow the Regularized Leader Optimization based Deep Neural Networks (CTN-FRL-DNN), Automatic classification of ultrasound thyroids images using vision transformers and generative adversarial networks (ACUTI-VT-GAN) respectively.\",\"PeriodicalId\":49401,\"journal\":{\"name\":\"Ultrasonic Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonic Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/01617346241271240\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonic Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01617346241271240","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
SPGAN Optimized by Piranha Foraging Optimization for Thyroid Nodule Classification in Ultrasound Images
In this research work, Semantic-Preserved Generative Adversarial Network optimized by Piranha Foraging Optimization for Thyroid Nodule Classification in Ultrasound Images (SPGAN-PFO-TNC-UI) is proposed. Initially, ultrasound images are gathered from the DDTI dataset. Then the input image is sent to the pre-processing step. During pre-processing stage, the Multi-Window Savitzky-Golay Filter (MWSGF) is employed to reduce the noise and improve the quality of the ultrasound (US) images. The pre-processed output is supplied to the Generalized Intuitionistic Fuzzy C-Means Clustering (GIFCMC). Here, the ultrasound image’s Region of Interest (ROI) is segmented. The segmentation output is supplied to the Fully Numerical Laplace Transform (FNLT) to extract the features, such as geometric features like solidity, orientation, roundness, main axis length, minor axis length, bounding box, convex area, and morphological features, like area, perimeter, aspect ratio, and AP ratio. The Semantic-Preserved Generative Adversarial Network (SPGAN) separates the image as benign or malignant nodules. Generally, SPGAN does not express any optimization adaptation methodologies for determining the best parameters to ensure the accurate classification of thyroid nodules. Therefore, the Piranha Foraging Optimization (PFO) algorithm is proposed to improve the SPGAN classifier and accurately identify the thyroid nodules. The metrics, like F-score, accuracy, error rate, precision, sensitivity, specificity, ROC, computing time is examined. The proposed SPGAN-PFO-TNC-UI method attains 30.54%, 21.30%, 27.40%, and 18.92% higher precision and 26.97%, 20.41%, 15.09%, and 18.27% lower error rate compared with existing techniques, like Thyroid detection and classification using DNN with Hybrid Meta-Heuristic and LSTM (TD-DL-HMH-LSTM), Quantum-Inspired convolutional neural networks for optimized thyroid nodule categorization (QCNN-OTNC), Thyroid nodules classification under Follow the Regularized Leader Optimization based Deep Neural Networks (CTN-FRL-DNN), Automatic classification of ultrasound thyroids images using vision transformers and generative adversarial networks (ACUTI-VT-GAN) respectively.
期刊介绍:
Ultrasonic Imaging provides rapid publication for original and exceptional papers concerned with the development and application of ultrasonic-imaging technology. Ultrasonic Imaging publishes articles in the following areas: theoretical and experimental aspects of advanced methods and instrumentation for imaging