Sungjong Woo, Seungbum Woo, Jung-Wan Ryu, Hee Chul Park
{"title":"高切尔诺数绝缘体工程","authors":"Sungjong Woo, Seungbum Woo, Jung-Wan Ryu, Hee Chul Park","doi":"10.1007/s40042-024-01162-z","DOIUrl":null,"url":null,"abstract":"<div><p>The concept of Chern insulators is one of the most important building block of topological physics, enabling the quantum Hall effect without external magnetic fields. The construction of Chern insulators has been typically through an guess-and-confirm approach, which can be inefficient and unpredictable. In this paper, we introduce a systematic method to directly construct two-dimensional Chern insulators that can provide any nontrivial Chern number. Our method is built upon the one-dimensional Rice–Mele model, which is well known for its adjustable polarization properties, providing a reliable framework for manipulation. By extending this model into two dimensions, we are able to engineer lattice structures that demonstrate predetermined topological quantities effectively. This research not only contributes the development of Chern insulators but also paves the way for designing a variety of lattice structures with significant topological implications, potentially impacting quantum computing and materials science. With this approach, we are to shed light on the pathways for designing more complex and functional topological phases in synthetic materials.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering high Chern number insulators\",\"authors\":\"Sungjong Woo, Seungbum Woo, Jung-Wan Ryu, Hee Chul Park\",\"doi\":\"10.1007/s40042-024-01162-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The concept of Chern insulators is one of the most important building block of topological physics, enabling the quantum Hall effect without external magnetic fields. The construction of Chern insulators has been typically through an guess-and-confirm approach, which can be inefficient and unpredictable. In this paper, we introduce a systematic method to directly construct two-dimensional Chern insulators that can provide any nontrivial Chern number. Our method is built upon the one-dimensional Rice–Mele model, which is well known for its adjustable polarization properties, providing a reliable framework for manipulation. By extending this model into two dimensions, we are able to engineer lattice structures that demonstrate predetermined topological quantities effectively. This research not only contributes the development of Chern insulators but also paves the way for designing a variety of lattice structures with significant topological implications, potentially impacting quantum computing and materials science. With this approach, we are to shed light on the pathways for designing more complex and functional topological phases in synthetic materials.</p></div>\",\"PeriodicalId\":677,\"journal\":{\"name\":\"Journal of the Korean Physical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Physical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40042-024-01162-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01162-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The concept of Chern insulators is one of the most important building block of topological physics, enabling the quantum Hall effect without external magnetic fields. The construction of Chern insulators has been typically through an guess-and-confirm approach, which can be inefficient and unpredictable. In this paper, we introduce a systematic method to directly construct two-dimensional Chern insulators that can provide any nontrivial Chern number. Our method is built upon the one-dimensional Rice–Mele model, which is well known for its adjustable polarization properties, providing a reliable framework for manipulation. By extending this model into two dimensions, we are able to engineer lattice structures that demonstrate predetermined topological quantities effectively. This research not only contributes the development of Chern insulators but also paves the way for designing a variety of lattice structures with significant topological implications, potentially impacting quantum computing and materials science. With this approach, we are to shed light on the pathways for designing more complex and functional topological phases in synthetic materials.
期刊介绍:
The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.