{"title":"对 RAON LAMPS 实验启动计数器的 GEANT4 仿真研究","authors":"YongJun Kim, Chong Kim, JeongSu Bok, SangHoon Lim","doi":"10.1007/s40042-024-01116-5","DOIUrl":null,"url":null,"abstract":"<div><p>The start counter is a scintillator detector designed to measure the reference time of the incident beam for the Large Acceptance Multi-Purpose Spectrometer (LAMPS) experiment at the Rare isotope Accelerator complex for ON-line experiments (RAON). The detector is composed of a plane of plastic scintillator and Multi-Pixel Photon Counter (MPPC) arrays attached to both edges of the scintillator. To understand the performance of the start counter, a simulation framework has been developed using the GENAT4 toolkit, which can simulate the generation and propagation of optical photons. Detailed optical properties of the scintillator and MPPCs are implemented in the simulation for a 5.48 MeV <span>\\(\\alpha\\)</span> beam corresponding to a <span>\\(^{241}\\)</span>Am radiation source. In this paper, we will report on the development of the simulation framework and its performance, including its application to the 250 MeV/A <span>\\(^{132}\\)</span>Sn beam as a typical rare isotope beam.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GEANT4 simulation study of the start counter for the LAMPS experiment at RAON\",\"authors\":\"YongJun Kim, Chong Kim, JeongSu Bok, SangHoon Lim\",\"doi\":\"10.1007/s40042-024-01116-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The start counter is a scintillator detector designed to measure the reference time of the incident beam for the Large Acceptance Multi-Purpose Spectrometer (LAMPS) experiment at the Rare isotope Accelerator complex for ON-line experiments (RAON). The detector is composed of a plane of plastic scintillator and Multi-Pixel Photon Counter (MPPC) arrays attached to both edges of the scintillator. To understand the performance of the start counter, a simulation framework has been developed using the GENAT4 toolkit, which can simulate the generation and propagation of optical photons. Detailed optical properties of the scintillator and MPPCs are implemented in the simulation for a 5.48 MeV <span>\\\\(\\\\alpha\\\\)</span> beam corresponding to a <span>\\\\(^{241}\\\\)</span>Am radiation source. In this paper, we will report on the development of the simulation framework and its performance, including its application to the 250 MeV/A <span>\\\\(^{132}\\\\)</span>Sn beam as a typical rare isotope beam.</p></div>\",\"PeriodicalId\":677,\"journal\":{\"name\":\"Journal of the Korean Physical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Physical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40042-024-01116-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01116-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
GEANT4 simulation study of the start counter for the LAMPS experiment at RAON
The start counter is a scintillator detector designed to measure the reference time of the incident beam for the Large Acceptance Multi-Purpose Spectrometer (LAMPS) experiment at the Rare isotope Accelerator complex for ON-line experiments (RAON). The detector is composed of a plane of plastic scintillator and Multi-Pixel Photon Counter (MPPC) arrays attached to both edges of the scintillator. To understand the performance of the start counter, a simulation framework has been developed using the GENAT4 toolkit, which can simulate the generation and propagation of optical photons. Detailed optical properties of the scintillator and MPPCs are implemented in the simulation for a 5.48 MeV \(\alpha\) beam corresponding to a \(^{241}\)Am radiation source. In this paper, we will report on the development of the simulation framework and its performance, including its application to the 250 MeV/A \(^{132}\)Sn beam as a typical rare isotope beam.
期刊介绍:
The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.