多模态情感计算的最新趋势:从 NLP 角度进行的调查

Guimin Hu, Yi Xin, Weimin Lyu, Haojian Huang, Chang Sun, Zhihong Zhu, Lin Gui, Ruichu Cai
{"title":"多模态情感计算的最新趋势:从 NLP 角度进行的调查","authors":"Guimin Hu, Yi Xin, Weimin Lyu, Haojian Huang, Chang Sun, Zhihong Zhu, Lin Gui, Ruichu Cai","doi":"arxiv-2409.07388","DOIUrl":null,"url":null,"abstract":"Multimodal affective computing (MAC) has garnered increasing attention due to\nits broad applications in analyzing human behaviors and intentions, especially\nin text-dominated multimodal affective computing field. This survey presents\nthe recent trends of multimodal affective computing from NLP perspective\nthrough four hot tasks: multimodal sentiment analysis, multimodal emotion\nrecognition in conversation, multimodal aspect-based sentiment analysis and\nmultimodal multi-label emotion recognition. The goal of this survey is to\nexplore the current landscape of multimodal affective research, identify\ndevelopment trends, and highlight the similarities and differences across\nvarious tasks, offering a comprehensive report on the recent progress in\nmultimodal affective computing from an NLP perspective. This survey covers the\nformalization of tasks, provides an overview of relevant works, describes\nbenchmark datasets, and details the evaluation metrics for each task.\nAdditionally, it briefly discusses research in multimodal affective computing\ninvolving facial expressions, acoustic signals, physiological signals, and\nemotion causes. Additionally, we discuss the technical approaches, challenges,\nand future directions in multimodal affective computing. To support further\nresearch, we released a repository that compiles related works in multimodal\naffective computing, providing detailed resources and references for the\ncommunity.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Trends of Multimodal Affective Computing: A Survey from NLP Perspective\",\"authors\":\"Guimin Hu, Yi Xin, Weimin Lyu, Haojian Huang, Chang Sun, Zhihong Zhu, Lin Gui, Ruichu Cai\",\"doi\":\"arxiv-2409.07388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal affective computing (MAC) has garnered increasing attention due to\\nits broad applications in analyzing human behaviors and intentions, especially\\nin text-dominated multimodal affective computing field. This survey presents\\nthe recent trends of multimodal affective computing from NLP perspective\\nthrough four hot tasks: multimodal sentiment analysis, multimodal emotion\\nrecognition in conversation, multimodal aspect-based sentiment analysis and\\nmultimodal multi-label emotion recognition. The goal of this survey is to\\nexplore the current landscape of multimodal affective research, identify\\ndevelopment trends, and highlight the similarities and differences across\\nvarious tasks, offering a comprehensive report on the recent progress in\\nmultimodal affective computing from an NLP perspective. This survey covers the\\nformalization of tasks, provides an overview of relevant works, describes\\nbenchmark datasets, and details the evaluation metrics for each task.\\nAdditionally, it briefly discusses research in multimodal affective computing\\ninvolving facial expressions, acoustic signals, physiological signals, and\\nemotion causes. Additionally, we discuss the technical approaches, challenges,\\nand future directions in multimodal affective computing. To support further\\nresearch, we released a repository that compiles related works in multimodal\\naffective computing, providing detailed resources and references for the\\ncommunity.\",\"PeriodicalId\":501030,\"journal\":{\"name\":\"arXiv - CS - Computation and Language\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computation and Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多模态情感计算(MAC)在分析人类行为和意图方面有着广泛的应用,尤其是在以文本为主的多模态情感计算领域,因此受到越来越多的关注。本调查从 NLP 的角度,通过多模态情感分析、对话中的多模态情感识别、基于多模态方面的情感分析和多模态多标签情感识别这四个热点任务,介绍了多模态情感计算的最新发展趋势。本调查的目的是探索多模态情感研究的现状,确定发展的趋势,并突出不同任务之间的异同,从 NLP 的角度全面报告多模态情感计算的最新进展。本调查报告涵盖了任务的形式化,概述了相关工作,描述了基准数据集,并详细介绍了每个任务的评估指标。此外,报告还简要讨论了涉及面部表情、声音信号、生理信号和情感原因的多模态情感计算研究。此外,我们还讨论了多模态情感计算的技术方法、挑战和未来方向。为了支持进一步的研究,我们发布了一个资料库,其中汇集了多模态情感计算方面的相关作品,为社区提供了详细的资源和参考资料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Trends of Multimodal Affective Computing: A Survey from NLP Perspective
Multimodal affective computing (MAC) has garnered increasing attention due to its broad applications in analyzing human behaviors and intentions, especially in text-dominated multimodal affective computing field. This survey presents the recent trends of multimodal affective computing from NLP perspective through four hot tasks: multimodal sentiment analysis, multimodal emotion recognition in conversation, multimodal aspect-based sentiment analysis and multimodal multi-label emotion recognition. The goal of this survey is to explore the current landscape of multimodal affective research, identify development trends, and highlight the similarities and differences across various tasks, offering a comprehensive report on the recent progress in multimodal affective computing from an NLP perspective. This survey covers the formalization of tasks, provides an overview of relevant works, describes benchmark datasets, and details the evaluation metrics for each task. Additionally, it briefly discusses research in multimodal affective computing involving facial expressions, acoustic signals, physiological signals, and emotion causes. Additionally, we discuss the technical approaches, challenges, and future directions in multimodal affective computing. To support further research, we released a repository that compiles related works in multimodal affective computing, providing detailed resources and references for the community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信