微调用于实体匹配的大型语言模型

Aaron Steiner, Ralph Peeters, Christian Bizer
{"title":"微调用于实体匹配的大型语言模型","authors":"Aaron Steiner, Ralph Peeters, Christian Bizer","doi":"arxiv-2409.08185","DOIUrl":null,"url":null,"abstract":"Generative large language models (LLMs) are a promising alternative to\npre-trained language models for entity matching due to their high zero-shot\nperformance and their ability to generalize to unseen entities. Existing\nresearch on using LLMs for entity matching has focused on prompt engineering\nand in-context learning. This paper explores the potential of fine-tuning LLMs\nfor entity matching. We analyze fine-tuning along two dimensions: 1) The\nrepresentation of training examples, where we experiment with adding different\ntypes of LLM-generated explanations to the training set, and 2) the selection\nand generation of training examples using LLMs. In addition to the matching\nperformance on the source dataset, we investigate how fine-tuning affects the\nmodel's ability to generalize to other in-domain datasets as well as across\ntopical domains. Our experiments show that fine-tuning significantly improves\nthe performance of the smaller models while the results for the larger models\nare mixed. Fine-tuning also improves the generalization to in-domain datasets\nwhile hurting cross-domain transfer. We show that adding structured\nexplanations to the training set has a positive impact on the performance of\nthree out of four LLMs, while the proposed example selection and generation\nmethods only improve the performance of Llama 3.1 8B while decreasing the\nperformance of GPT-4o Mini.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-tuning Large Language Models for Entity Matching\",\"authors\":\"Aaron Steiner, Ralph Peeters, Christian Bizer\",\"doi\":\"arxiv-2409.08185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative large language models (LLMs) are a promising alternative to\\npre-trained language models for entity matching due to their high zero-shot\\nperformance and their ability to generalize to unseen entities. Existing\\nresearch on using LLMs for entity matching has focused on prompt engineering\\nand in-context learning. This paper explores the potential of fine-tuning LLMs\\nfor entity matching. We analyze fine-tuning along two dimensions: 1) The\\nrepresentation of training examples, where we experiment with adding different\\ntypes of LLM-generated explanations to the training set, and 2) the selection\\nand generation of training examples using LLMs. In addition to the matching\\nperformance on the source dataset, we investigate how fine-tuning affects the\\nmodel's ability to generalize to other in-domain datasets as well as across\\ntopical domains. Our experiments show that fine-tuning significantly improves\\nthe performance of the smaller models while the results for the larger models\\nare mixed. Fine-tuning also improves the generalization to in-domain datasets\\nwhile hurting cross-domain transfer. We show that adding structured\\nexplanations to the training set has a positive impact on the performance of\\nthree out of four LLMs, while the proposed example selection and generation\\nmethods only improve the performance of Llama 3.1 8B while decreasing the\\nperformance of GPT-4o Mini.\",\"PeriodicalId\":501030,\"journal\":{\"name\":\"arXiv - CS - Computation and Language\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computation and Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成式大语言模型(LLMs)由于其较高的零点性能和泛化到未见实体的能力,在实体匹配方面是经过重新训练的语言模型的一种有前途的替代方案。关于使用 LLMs 进行实体匹配的现有研究主要集中在提示工程和上下文学习方面。本文探讨了微调 LLM 用于实体匹配的潜力。我们从两个方面对微调进行了分析:1)训练示例的呈现,我们尝试在训练集中添加不同类型的 LLM 生成的解释;2)使用 LLM 选择和生成训练示例。除了源数据集上的匹配性能外,我们还研究了微调如何影响模型泛化到其他领域内数据集以及跨领域的能力。我们的实验表明,微调显著提高了较小模型的性能,而较大模型的结果则参差不齐。微调还提高了对域内数据集的泛化,同时损害了跨域转移。我们的研究表明,在训练集中添加结构解释对四个 LLM 中三个模型的性能有积极影响,而所提出的示例选择和生成方法只提高了 Llama 3.1 8B 的性能,却降低了 GPT-4o Mini 的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-tuning Large Language Models for Entity Matching
Generative large language models (LLMs) are a promising alternative to pre-trained language models for entity matching due to their high zero-shot performance and their ability to generalize to unseen entities. Existing research on using LLMs for entity matching has focused on prompt engineering and in-context learning. This paper explores the potential of fine-tuning LLMs for entity matching. We analyze fine-tuning along two dimensions: 1) The representation of training examples, where we experiment with adding different types of LLM-generated explanations to the training set, and 2) the selection and generation of training examples using LLMs. In addition to the matching performance on the source dataset, we investigate how fine-tuning affects the model's ability to generalize to other in-domain datasets as well as across topical domains. Our experiments show that fine-tuning significantly improves the performance of the smaller models while the results for the larger models are mixed. Fine-tuning also improves the generalization to in-domain datasets while hurting cross-domain transfer. We show that adding structured explanations to the training set has a positive impact on the performance of three out of four LLMs, while the proposed example selection and generation methods only improve the performance of Llama 3.1 8B while decreasing the performance of GPT-4o Mini.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信