Cheng Luo, Juntao Li, Ruiling Zhang, Peigeng Han, Jianyong Liu, Bin Yang
{"title":"零维混合氯化锰单晶光致发光的强锰─锰耦合定量解耦","authors":"Cheng Luo, Juntao Li, Ruiling Zhang, Peigeng Han, Jianyong Liu, Bin Yang","doi":"10.1002/adom.202401591","DOIUrl":null,"url":null,"abstract":"Strong Mn─Mn coupling interactions, including dipolar and exchange interactions, significantly affect the photoluminescence quantum yields (PLQYs) in Mn<jats:sup>2+</jats:sup>‐based luminescent materials. However, clarifying the individual effects of dipole–dipole and exchange interactions on photoluminescence (PL) is challenging because these interactions may have similar effects on PL properties, and there is a lack of materials with precisely tunable Mn─Mn distances over a wide range. In this study, the influence of dipolar and exchange coupling on PLQY is quantitatively decoupled by designing a series of hybrid manganese chlorides single crystals with a wide tuning range of Mn─Mn distances, from 6.0 to 9.5 Å. It is found that the PLQY can be enhanced from 2.1% to 57.1%, and the PL lifetime increased from 0.21 to 3.81 ms as the Mn─Mn distance increased. This enhancement is solely attributed to the decreased energy transfer dominated by dipole–dipole interactions. At the shortest Mn─Mn distance of 6 Å, exchange coupling becomes dominant, resulting in an additional red‐side PL band with negligible effects on PLQY and lifetime. This work provides valuable insights into the mechanisms underlying the regulation of PLQY in Mn<jats:sup>2</jats:sup>⁺‐based luminescent materials.","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"24 1","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Decoupling of Strong Mn─Mn Coupling on Photoluminescence of Zero‐Dimensional Hybrid Manganese Chlorides Single Crystals\",\"authors\":\"Cheng Luo, Juntao Li, Ruiling Zhang, Peigeng Han, Jianyong Liu, Bin Yang\",\"doi\":\"10.1002/adom.202401591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strong Mn─Mn coupling interactions, including dipolar and exchange interactions, significantly affect the photoluminescence quantum yields (PLQYs) in Mn<jats:sup>2+</jats:sup>‐based luminescent materials. However, clarifying the individual effects of dipole–dipole and exchange interactions on photoluminescence (PL) is challenging because these interactions may have similar effects on PL properties, and there is a lack of materials with precisely tunable Mn─Mn distances over a wide range. In this study, the influence of dipolar and exchange coupling on PLQY is quantitatively decoupled by designing a series of hybrid manganese chlorides single crystals with a wide tuning range of Mn─Mn distances, from 6.0 to 9.5 Å. It is found that the PLQY can be enhanced from 2.1% to 57.1%, and the PL lifetime increased from 0.21 to 3.81 ms as the Mn─Mn distance increased. This enhancement is solely attributed to the decreased energy transfer dominated by dipole–dipole interactions. At the shortest Mn─Mn distance of 6 Å, exchange coupling becomes dominant, resulting in an additional red‐side PL band with negligible effects on PLQY and lifetime. This work provides valuable insights into the mechanisms underlying the regulation of PLQY in Mn<jats:sup>2</jats:sup>⁺‐based luminescent materials.\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adom.202401591\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adom.202401591","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantitative Decoupling of Strong Mn─Mn Coupling on Photoluminescence of Zero‐Dimensional Hybrid Manganese Chlorides Single Crystals
Strong Mn─Mn coupling interactions, including dipolar and exchange interactions, significantly affect the photoluminescence quantum yields (PLQYs) in Mn2+‐based luminescent materials. However, clarifying the individual effects of dipole–dipole and exchange interactions on photoluminescence (PL) is challenging because these interactions may have similar effects on PL properties, and there is a lack of materials with precisely tunable Mn─Mn distances over a wide range. In this study, the influence of dipolar and exchange coupling on PLQY is quantitatively decoupled by designing a series of hybrid manganese chlorides single crystals with a wide tuning range of Mn─Mn distances, from 6.0 to 9.5 Å. It is found that the PLQY can be enhanced from 2.1% to 57.1%, and the PL lifetime increased from 0.21 to 3.81 ms as the Mn─Mn distance increased. This enhancement is solely attributed to the decreased energy transfer dominated by dipole–dipole interactions. At the shortest Mn─Mn distance of 6 Å, exchange coupling becomes dominant, resulting in an additional red‐side PL band with negligible effects on PLQY and lifetime. This work provides valuable insights into the mechanisms underlying the regulation of PLQY in Mn2⁺‐based luminescent materials.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.