利用随机矩阵理论重新审视众多工具问题

Helmut Farbmacher, Rebecca Groh, Michael Mühlegger, Gabriel Vollert
{"title":"利用随机矩阵理论重新审视众多工具问题","authors":"Helmut Farbmacher, Rebecca Groh, Michael Mühlegger, Gabriel Vollert","doi":"arxiv-2408.08580","DOIUrl":null,"url":null,"abstract":"We use recent results from the theory of random matrices to improve\ninstrumental variables estimation with many instruments. In settings where the\nfirst-stage parameters are dense, we show that Ridge lowers the implicit price\nof a bias adjustment. This comes along with improved (finite-sample) properties\nin the second stage regression. Our theoretical results nest existing results\non bias approximation and bias adjustment. Moreover, it extends them to\nsettings with more instruments than observations.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the Many Instruments Problem using Random Matrix Theory\",\"authors\":\"Helmut Farbmacher, Rebecca Groh, Michael Mühlegger, Gabriel Vollert\",\"doi\":\"arxiv-2408.08580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use recent results from the theory of random matrices to improve\\ninstrumental variables estimation with many instruments. In settings where the\\nfirst-stage parameters are dense, we show that Ridge lowers the implicit price\\nof a bias adjustment. This comes along with improved (finite-sample) properties\\nin the second stage regression. Our theoretical results nest existing results\\non bias approximation and bias adjustment. Moreover, it extends them to\\nsettings with more instruments than observations.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.08580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用随机矩阵理论的最新成果来改进多工具的工具变量估计。在第一阶段参数密集的情况下,我们发现 Ridge 降低了偏差调整的隐含代价。同时,这也改善了第二阶段回归的(有限样本)特性。我们的理论结果与现有的偏差逼近和偏差调整结果相吻合。此外,它还将这些结果扩展到了工具多于观测值的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting the Many Instruments Problem using Random Matrix Theory
We use recent results from the theory of random matrices to improve instrumental variables estimation with many instruments. In settings where the first-stage parameters are dense, we show that Ridge lowers the implicit price of a bias adjustment. This comes along with improved (finite-sample) properties in the second stage regression. Our theoretical results nest existing results on bias approximation and bias adjustment. Moreover, it extends them to settings with more instruments than observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信