反事实和合成控制法:利用工具主成分分析进行因果推断

Cong Wang
{"title":"反事实和合成控制法:利用工具主成分分析进行因果推断","authors":"Cong Wang","doi":"arxiv-2408.09271","DOIUrl":null,"url":null,"abstract":"The fundamental problem of causal inference lies in the absence of\ncounterfactuals. Traditional methodologies impute the missing counterfactuals\nimplicitly or explicitly based on untestable or overly stringent assumptions.\nSynthetic control method (SCM) utilizes a weighted average of control units to\nimpute the missing counterfactual for the treated unit. Although SCM relaxes\nsome strict assumptions, it still requires the treated unit to be inside the\nconvex hull formed by the controls, avoiding extrapolation. In recent advances,\nresearchers have modeled the entire data generating process (DGP) to explicitly\nimpute the missing counterfactual. This paper expands the interactive fixed\neffect (IFE) model by instrumenting covariates into factor loadings, adding\nadditional robustness. This methodology offers multiple benefits: firstly, it\nincorporates the strengths of previous SCM approaches, such as the relaxation\nof the untestable parallel trends assumption (PTA). Secondly, it does not\nrequire the targeted outcomes to be inside the convex hull formed by the\ncontrols. Thirdly, it eliminates the need for correct model specification\nrequired by the IFE model. Finally, it inherits the ability of principal\ncomponent analysis (PCA) to effectively handle high-dimensional data and\nenhances the value extracted from numerous covariates.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"141 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counterfactual and Synthetic Control Method: Causal Inference with Instrumented Principal Component Analysis\",\"authors\":\"Cong Wang\",\"doi\":\"arxiv-2408.09271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fundamental problem of causal inference lies in the absence of\\ncounterfactuals. Traditional methodologies impute the missing counterfactuals\\nimplicitly or explicitly based on untestable or overly stringent assumptions.\\nSynthetic control method (SCM) utilizes a weighted average of control units to\\nimpute the missing counterfactual for the treated unit. Although SCM relaxes\\nsome strict assumptions, it still requires the treated unit to be inside the\\nconvex hull formed by the controls, avoiding extrapolation. In recent advances,\\nresearchers have modeled the entire data generating process (DGP) to explicitly\\nimpute the missing counterfactual. This paper expands the interactive fixed\\neffect (IFE) model by instrumenting covariates into factor loadings, adding\\nadditional robustness. This methodology offers multiple benefits: firstly, it\\nincorporates the strengths of previous SCM approaches, such as the relaxation\\nof the untestable parallel trends assumption (PTA). Secondly, it does not\\nrequire the targeted outcomes to be inside the convex hull formed by the\\ncontrols. Thirdly, it eliminates the need for correct model specification\\nrequired by the IFE model. Finally, it inherits the ability of principal\\ncomponent analysis (PCA) to effectively handle high-dimensional data and\\nenhances the value extracted from numerous covariates.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"141 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

因果推断的根本问题在于缺乏反事实。传统方法基于无法检验或过于严格的假设,或隐式或显式地计算缺失的反事实。虽然合成控制法放宽了一些严格的假设,但它仍然要求被处理单位位于控制单元形成的凸壳内,从而避免了外推。最近,研究人员对整个数据生成过程(DGP)进行了建模,以明确计算缺失的反事实。本文通过将协变量工具化为因子载荷,扩展了交互固定效应(IFE)模型,增加了额外的稳健性。这种方法有多个优点:首先,它吸收了以往单因素模型方法的优点,如放宽了无法检验的平行趋势假设(PTA)。其次,它不要求目标结果位于控制所形成的凸壳内。第三,它不需要 IFE 模型所要求的正确模型规范。最后,它继承了主成分分析(PCA)有效处理高维数据的能力,并提高了从众多协变量中提取的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counterfactual and Synthetic Control Method: Causal Inference with Instrumented Principal Component Analysis
The fundamental problem of causal inference lies in the absence of counterfactuals. Traditional methodologies impute the missing counterfactuals implicitly or explicitly based on untestable or overly stringent assumptions. Synthetic control method (SCM) utilizes a weighted average of control units to impute the missing counterfactual for the treated unit. Although SCM relaxes some strict assumptions, it still requires the treated unit to be inside the convex hull formed by the controls, avoiding extrapolation. In recent advances, researchers have modeled the entire data generating process (DGP) to explicitly impute the missing counterfactual. This paper expands the interactive fixed effect (IFE) model by instrumenting covariates into factor loadings, adding additional robustness. This methodology offers multiple benefits: firstly, it incorporates the strengths of previous SCM approaches, such as the relaxation of the untestable parallel trends assumption (PTA). Secondly, it does not require the targeted outcomes to be inside the convex hull formed by the controls. Thirdly, it eliminates the need for correct model specification required by the IFE model. Finally, it inherits the ability of principal component analysis (PCA) to effectively handle high-dimensional data and enhances the value extracted from numerous covariates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信