采用双重/偏差机器学习的连续差分法

Lucas Zhang
{"title":"采用双重/偏差机器学习的连续差分法","authors":"Lucas Zhang","doi":"arxiv-2408.10509","DOIUrl":null,"url":null,"abstract":"This paper extends difference-in-differences to settings involving continuous\ntreatments. Specifically, the average treatment effect on the treated (ATT) at\nany level of continuous treatment intensity is identified using a conditional\nparallel trends assumption. In this framework, estimating the ATTs requires\nfirst estimating infinite-dimensional nuisance parameters, especially the\nconditional density of the continuous treatment, which can introduce\nsignificant biases. To address this challenge, estimators for the causal\nparameters are proposed under the double/debiased machine learning framework.\nWe show that these estimators are asymptotically normal and provide consistent\nvariance estimators. To illustrate the effectiveness of our methods, we\nre-examine the study by Acemoglu and Finkelstein (2008), which assessed the\neffects of the 1983 Medicare Prospective Payment System (PPS) reform. By\nreinterpreting their research design using a difference-in-differences approach\nwith continuous treatment, we nonparametrically estimate the treatment effects\nof the 1983 PPS reform, thereby providing a more detailed understanding of its\nimpact.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous difference-in-differences with double/debiased machine learning\",\"authors\":\"Lucas Zhang\",\"doi\":\"arxiv-2408.10509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper extends difference-in-differences to settings involving continuous\\ntreatments. Specifically, the average treatment effect on the treated (ATT) at\\nany level of continuous treatment intensity is identified using a conditional\\nparallel trends assumption. In this framework, estimating the ATTs requires\\nfirst estimating infinite-dimensional nuisance parameters, especially the\\nconditional density of the continuous treatment, which can introduce\\nsignificant biases. To address this challenge, estimators for the causal\\nparameters are proposed under the double/debiased machine learning framework.\\nWe show that these estimators are asymptotically normal and provide consistent\\nvariance estimators. To illustrate the effectiveness of our methods, we\\nre-examine the study by Acemoglu and Finkelstein (2008), which assessed the\\neffects of the 1983 Medicare Prospective Payment System (PPS) reform. By\\nreinterpreting their research design using a difference-in-differences approach\\nwith continuous treatment, we nonparametrically estimate the treatment effects\\nof the 1983 PPS reform, thereby providing a more detailed understanding of its\\nimpact.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将差分法扩展到涉及连续治疗的环境中。具体来说,在任何连续治疗强度水平上,对被治疗者的平均治疗效果(ATT)都是通过条件平行趋势假设来确定的。在此框架下,估计 ATT 需要首先估计无穷维的滋扰参数,特别是连续治疗的条件密度,这会带来显著偏差。为了应对这一挑战,我们提出了双重/偏差机器学习框架下的因果参数估计器。为了说明我们方法的有效性,我们对 Acemoglu 和 Finkelstein(2008 年)的研究进行了检验,该研究评估了 1983 年医疗保险预付费系统(PPS)改革的影响。通过使用连续治疗的差分法解释他们的研究设计,我们对 1983 年 PPS 改革的治疗效果进行了非参数估计,从而更详细地了解了改革的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous difference-in-differences with double/debiased machine learning
This paper extends difference-in-differences to settings involving continuous treatments. Specifically, the average treatment effect on the treated (ATT) at any level of continuous treatment intensity is identified using a conditional parallel trends assumption. In this framework, estimating the ATTs requires first estimating infinite-dimensional nuisance parameters, especially the conditional density of the continuous treatment, which can introduce significant biases. To address this challenge, estimators for the causal parameters are proposed under the double/debiased machine learning framework. We show that these estimators are asymptotically normal and provide consistent variance estimators. To illustrate the effectiveness of our methods, we re-examine the study by Acemoglu and Finkelstein (2008), which assessed the effects of the 1983 Medicare Prospective Payment System (PPS) reform. By reinterpreting their research design using a difference-in-differences approach with continuous treatment, we nonparametrically estimate the treatment effects of the 1983 PPS reform, thereby providing a more detailed understanding of its impact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信