{"title":"近似因子模型中群体主成分的 L2 收敛性","authors":"Philipp Gersing","doi":"arxiv-2408.11676","DOIUrl":null,"url":null,"abstract":"We prove that under the condition that the eigenvalues are asymptotically\nwell separated and stable, the normalised principal components of a r-static\nfactor sequence converge in mean square. Consequently, we have a generic\ninterpretation of the principal components estimator as the normalised\nprincipal components of the statically common space. We illustrate why this can\nbe useful for the interpretation of the PC-estimated factors, performing an\nasymptotic theory without rotation matrices and avoiding singularity issues in\nfactor augmented regressions.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L2-Convergence of the Population Principal Components in the Approximate Factor Model\",\"authors\":\"Philipp Gersing\",\"doi\":\"arxiv-2408.11676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that under the condition that the eigenvalues are asymptotically\\nwell separated and stable, the normalised principal components of a r-static\\nfactor sequence converge in mean square. Consequently, we have a generic\\ninterpretation of the principal components estimator as the normalised\\nprincipal components of the statically common space. We illustrate why this can\\nbe useful for the interpretation of the PC-estimated factors, performing an\\nasymptotic theory without rotation matrices and avoiding singularity issues in\\nfactor augmented regressions.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,在特征值渐近分离且稳定的条件下,r-静态因子序列的归一化主成分均方收敛。因此,我们可以将主成分估计器通用地解释为静态公共空间的归一化主成分。我们将说明为什么这有助于解释 PC 估计因子,在没有旋转矩阵的情况下执行渐近理论,并避免因子增强回归的奇异性问题。
L2-Convergence of the Population Principal Components in the Approximate Factor Model
We prove that under the condition that the eigenvalues are asymptotically
well separated and stable, the normalised principal components of a r-static
factor sequence converge in mean square. Consequently, we have a generic
interpretation of the principal components estimator as the normalised
principal components of the statically common space. We illustrate why this can
be useful for the interpretation of the PC-estimated factors, performing an
asymptotic theory without rotation matrices and avoiding singularity issues in
factor augmented regressions.