BayesSRW:减少方差的贝叶斯取样和再加权方法

Carol Liu
{"title":"BayesSRW:减少方差的贝叶斯取样和再加权方法","authors":"Carol Liu","doi":"arxiv-2408.15454","DOIUrl":null,"url":null,"abstract":"In this paper, we address the challenge of sampling in scenarios where\nlimited resources prevent exhaustive measurement across all subjects. We\nconsider a setting where samples are drawn from multiple groups, each following\na distribution with unknown mean and variance parameters. We introduce a novel\nsampling strategy, motivated simply by Cauchy-Schwarz inequality, which\nminimizes the variance of the population mean estimator by allocating samples\nproportionally to both the group size and the standard deviation. This approach\nimproves the efficiency of sampling by focusing resources on groups with\ngreater variability, thereby enhancing the precision of the overall estimate.\nAdditionally, we extend our method to a two-stage sampling procedure in a Bayes\napproach, named BayesSRW, where a preliminary stage is used to estimate the\nvariance, which then informs the optimal allocation of the remaining sampling\nbudget. Through simulation examples, we demonstrate the effectiveness of our\napproach in reducing estimation uncertainty and providing more reliable\ninsights in applications ranging from user experience surveys to\nhigh-dimensional peptide array studies.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BayesSRW: Bayesian Sampling and Re-weighting approach for variance reduction\",\"authors\":\"Carol Liu\",\"doi\":\"arxiv-2408.15454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the challenge of sampling in scenarios where\\nlimited resources prevent exhaustive measurement across all subjects. We\\nconsider a setting where samples are drawn from multiple groups, each following\\na distribution with unknown mean and variance parameters. We introduce a novel\\nsampling strategy, motivated simply by Cauchy-Schwarz inequality, which\\nminimizes the variance of the population mean estimator by allocating samples\\nproportionally to both the group size and the standard deviation. This approach\\nimproves the efficiency of sampling by focusing resources on groups with\\ngreater variability, thereby enhancing the precision of the overall estimate.\\nAdditionally, we extend our method to a two-stage sampling procedure in a Bayes\\napproach, named BayesSRW, where a preliminary stage is used to estimate the\\nvariance, which then informs the optimal allocation of the remaining sampling\\nbudget. Through simulation examples, we demonstrate the effectiveness of our\\napproach in reducing estimation uncertainty and providing more reliable\\ninsights in applications ranging from user experience surveys to\\nhigh-dimensional peptide array studies.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们探讨了在资源有限、无法对所有研究对象进行详尽测量的情况下进行抽样的难题。我们考虑了从多个组中抽取样本的情况,每个组都遵循一个具有未知均值和方差参数的分布。我们引入了一种新颖的抽样策略,这种策略的动机很简单,就是考希-施瓦茨不等式,它通过按组别大小和标准差成比例地分配样本,最大限度地减小了群体均值估计值的方差。此外,我们还将方法扩展到贝叶斯方法中的两阶段抽样程序,即贝叶斯 SRW,其中初步阶段用于估计方差,然后为剩余抽样预算的最优分配提供信息。通过模拟示例,我们展示了我们的方法在减少估计不确定性和提供更可靠洞察力方面的有效性,应用范围从用户体验调查到高维肽阵列研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BayesSRW: Bayesian Sampling and Re-weighting approach for variance reduction
In this paper, we address the challenge of sampling in scenarios where limited resources prevent exhaustive measurement across all subjects. We consider a setting where samples are drawn from multiple groups, each following a distribution with unknown mean and variance parameters. We introduce a novel sampling strategy, motivated simply by Cauchy-Schwarz inequality, which minimizes the variance of the population mean estimator by allocating samples proportionally to both the group size and the standard deviation. This approach improves the efficiency of sampling by focusing resources on groups with greater variability, thereby enhancing the precision of the overall estimate. Additionally, we extend our method to a two-stage sampling procedure in a Bayes approach, named BayesSRW, where a preliminary stage is used to estimate the variance, which then informs the optimal allocation of the remaining sampling budget. Through simulation examples, we demonstrate the effectiveness of our approach in reducing estimation uncertainty and providing more reliable insights in applications ranging from user experience surveys to high-dimensional peptide array studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信