分布 回归 差异

Iván Fernández-Val, Jonas Meier, Aico van Vuuren, Francis Vella
{"title":"分布 回归 差异","authors":"Iván Fernández-Val, Jonas Meier, Aico van Vuuren, Francis Vella","doi":"arxiv-2409.02311","DOIUrl":null,"url":null,"abstract":"We provide a simple distribution regression estimator for treatment effects\nin the difference-in-differences (DiD) design. Our procedure is particularly\nuseful when the treatment effect differs across the distribution of the outcome\nvariable. Our proposed estimator easily incorporates covariates and,\nimportantly, can be extended to settings where the treatment potentially\naffects the joint distribution of multiple outcomes. Our key identifying\nrestriction is that the counterfactual distribution of the treated in the\nuntreated state has no interaction effect between treatment and time. This\nassumption results in a parallel trend assumption on a transformation of the\ndistribution. We highlight the relationship between our procedure and\nassumptions with the changes-in-changes approach of Athey and Imbens (2006). We\nalso reexamine two existing empirical examples which highlight the utility of\nour approach.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution Regression Difference-In-Differences\",\"authors\":\"Iván Fernández-Val, Jonas Meier, Aico van Vuuren, Francis Vella\",\"doi\":\"arxiv-2409.02311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a simple distribution regression estimator for treatment effects\\nin the difference-in-differences (DiD) design. Our procedure is particularly\\nuseful when the treatment effect differs across the distribution of the outcome\\nvariable. Our proposed estimator easily incorporates covariates and,\\nimportantly, can be extended to settings where the treatment potentially\\naffects the joint distribution of multiple outcomes. Our key identifying\\nrestriction is that the counterfactual distribution of the treated in the\\nuntreated state has no interaction effect between treatment and time. This\\nassumption results in a parallel trend assumption on a transformation of the\\ndistribution. We highlight the relationship between our procedure and\\nassumptions with the changes-in-changes approach of Athey and Imbens (2006). We\\nalso reexamine two existing empirical examples which highlight the utility of\\nour approach.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为差分(DiD)设计中的治疗效果提供了一种简单的分布回归估计方法。当治疗效果随结果变量的分布而变化时,我们的方法尤其有用。我们提出的估计方法很容易纳入协变量,而且重要的是,可以扩展到治疗可能影响多个结果联合分布的情况。我们的关键识别限制条件是,未治疗状态下治疗者的反事实分布在治疗和时间之间没有交互影响。这一假设导致了对分布变换的平行趋势假设。我们强调了我们的程序和假设与 Athey 和 Imbens(2006 年)的 "变化中的变化 "方法之间的关系。我们还重新审查了两个现有的实证例子,它们突出了我们方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution Regression Difference-In-Differences
We provide a simple distribution regression estimator for treatment effects in the difference-in-differences (DiD) design. Our procedure is particularly useful when the treatment effect differs across the distribution of the outcome variable. Our proposed estimator easily incorporates covariates and, importantly, can be extended to settings where the treatment potentially affects the joint distribution of multiple outcomes. Our key identifying restriction is that the counterfactual distribution of the treated in the untreated state has no interaction effect between treatment and time. This assumption results in a parallel trend assumption on a transformation of the distribution. We highlight the relationship between our procedure and assumptions with the changes-in-changes approach of Athey and Imbens (2006). We also reexamine two existing empirical examples which highlight the utility of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信