主成分回归的经验风险最小化性能

Christian Brownlees, Guðmundur Stefán Guðmundsson, Yaping Wang
{"title":"主成分回归的经验风险最小化性能","authors":"Christian Brownlees, Guðmundur Stefán Guðmundsson, Yaping Wang","doi":"arxiv-2409.03606","DOIUrl":null,"url":null,"abstract":"This paper establishes bounds on the predictive performance of empirical risk\nminimization for principal component regression. Our analysis is nonparametric,\nin the sense that the relation between the prediction target and the predictors\nis not specified. In particular, we do not rely on the assumption that the\nprediction target is generated by a factor model. In our analysis we consider\nthe cases in which the largest eigenvalues of the covariance matrix of the\npredictors grow linearly in the number of predictors (strong signal regime) or\nsublinearly (weak signal regime). The main result of this paper shows that\nempirical risk minimization for principal component regression is consistent\nfor prediction and, under appropriate conditions, it achieves optimal\nperformance (up to a logarithmic factor) in both the strong and weak signal\nregimes.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of Empirical Risk Minimization For Principal Component Regression\",\"authors\":\"Christian Brownlees, Guðmundur Stefán Guðmundsson, Yaping Wang\",\"doi\":\"arxiv-2409.03606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes bounds on the predictive performance of empirical risk\\nminimization for principal component regression. Our analysis is nonparametric,\\nin the sense that the relation between the prediction target and the predictors\\nis not specified. In particular, we do not rely on the assumption that the\\nprediction target is generated by a factor model. In our analysis we consider\\nthe cases in which the largest eigenvalues of the covariance matrix of the\\npredictors grow linearly in the number of predictors (strong signal regime) or\\nsublinearly (weak signal regime). The main result of this paper shows that\\nempirical risk minimization for principal component regression is consistent\\nfor prediction and, under appropriate conditions, it achieves optimal\\nperformance (up to a logarithmic factor) in both the strong and weak signal\\nregimes.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文确定了主成分回归经验风险最小化预测性能的界限。我们的分析是非参数分析,即没有指定预测目标和预测因子之间的关系。特别是,我们并不依赖于预测目标由因子模型生成这一假设。在分析中,我们考虑了预测因子协方差矩阵最大特征值随预测因子数量线性增长(强信号机制)或次线性增长(弱信号机制)的情况。本文的主要结果表明,主成分回归的经验风险最小化在预测方面是一致的,而且在适当的条件下,它在强信号和弱信号两种情况下都能达到最佳性能(达到对数因子)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of Empirical Risk Minimization For Principal Component Regression
This paper establishes bounds on the predictive performance of empirical risk minimization for principal component regression. Our analysis is nonparametric, in the sense that the relation between the prediction target and the predictors is not specified. In particular, we do not rely on the assumption that the prediction target is generated by a factor model. In our analysis we consider the cases in which the largest eigenvalues of the covariance matrix of the predictors grow linearly in the number of predictors (strong signal regime) or sublinearly (weak signal regime). The main result of this paper shows that empirical risk minimization for principal component regression is consistent for prediction and, under appropriate conditions, it achieves optimal performance (up to a logarithmic factor) in both the strong and weak signal regimes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信