内生性下的极端量化治疗效应:评估针对最弱势个体的政策效应

Yuya Sasaki, Yulong Wang
{"title":"内生性下的极端量化治疗效应:评估针对最弱势个体的政策效应","authors":"Yuya Sasaki, Yulong Wang","doi":"arxiv-2409.03979","DOIUrl":null,"url":null,"abstract":"We introduce a novel method for estimating and conducting inference about\nextreme quantile treatment effects (QTEs) in the presence of endogeneity. Our\napproach is applicable to a broad range of empirical research designs,\nincluding instrumental variables design and regression discontinuity design,\namong others. By leveraging regular variation and subsampling, the method\nensures robust performance even in extreme tails, where data may be sparse or\nentirely absent. Simulation studies confirm the theoretical robustness of our\napproach. Applying our method to assess the impact of job training provided by\nthe Job Training Partnership Act (JTPA), we find significantly negative QTEs\nfor the lowest quantiles (i.e., the most disadvantaged individuals),\ncontrasting with previous literature that emphasizes positive QTEs for\nintermediate quantiles.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"395 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extreme Quantile Treatment Effects under Endogeneity: Evaluating Policy Effects for the Most Vulnerable Individuals\",\"authors\":\"Yuya Sasaki, Yulong Wang\",\"doi\":\"arxiv-2409.03979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel method for estimating and conducting inference about\\nextreme quantile treatment effects (QTEs) in the presence of endogeneity. Our\\napproach is applicable to a broad range of empirical research designs,\\nincluding instrumental variables design and regression discontinuity design,\\namong others. By leveraging regular variation and subsampling, the method\\nensures robust performance even in extreme tails, where data may be sparse or\\nentirely absent. Simulation studies confirm the theoretical robustness of our\\napproach. Applying our method to assess the impact of job training provided by\\nthe Job Training Partnership Act (JTPA), we find significantly negative QTEs\\nfor the lowest quantiles (i.e., the most disadvantaged individuals),\\ncontrasting with previous literature that emphasizes positive QTEs for\\nintermediate quantiles.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"395 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种新方法,用于在存在内生性的情况下估计和推断极端量化处理效应(QTE)。我们的方法适用于广泛的实证研究设计,包括工具变量设计和回归不连续设计等。通过利用规则变化和子采样,该方法即使在数据稀少或完全不存在的极端尾部也能确保稳健的性能。模拟研究证实了我们方法的理论稳健性。应用我们的方法评估《就业培训合作法案》(JTPA)提供的就业培训的影响时,我们发现最低量化组(即处境最不利的个人)的 QTE 为负值,这与之前强调中间量化组的 QTE 为正值的文献形成了鲜明对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extreme Quantile Treatment Effects under Endogeneity: Evaluating Policy Effects for the Most Vulnerable Individuals
We introduce a novel method for estimating and conducting inference about extreme quantile treatment effects (QTEs) in the presence of endogeneity. Our approach is applicable to a broad range of empirical research designs, including instrumental variables design and regression discontinuity design, among others. By leveraging regular variation and subsampling, the method ensures robust performance even in extreme tails, where data may be sparse or entirely absent. Simulation studies confirm the theoretical robustness of our approach. Applying our method to assess the impact of job training provided by the Job Training Partnership Act (JTPA), we find significantly negative QTEs for the lowest quantiles (i.e., the most disadvantaged individuals), contrasting with previous literature that emphasizes positive QTEs for intermediate quantiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信