{"title":"量子微积分中的泰勒理论:一般方法","authors":"Enas M. Shehata, Rasha M. El Zafarani","doi":"10.2989/16073606.2024.2396517","DOIUrl":null,"url":null,"abstract":"Let the function β be strictly increasing and continuous on an interval I ⊂ ℝ. The β-difference operator is defined by Dβ f (t) = (f(β(t)) − f(t)/(β(t) – t), where t ≠ β(t), and Dβ f (t) = f′ t(t) ...","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taylor theory in quantum calculus: a general approach\",\"authors\":\"Enas M. Shehata, Rasha M. El Zafarani\",\"doi\":\"10.2989/16073606.2024.2396517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let the function β be strictly increasing and continuous on an interval I ⊂ ℝ. The β-difference operator is defined by Dβ f (t) = (f(β(t)) − f(t)/(β(t) – t), where t ≠ β(t), and Dβ f (t) = f′ t(t) ...\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2989/16073606.2024.2396517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2989/16073606.2024.2396517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设函数 β 在区间 I ⊂ ℝ 上严格递增且连续。β 差分算子的定义是 Dβ f (t) = (f(β(t))- f(t)/(β(t)-t),其中 t≠ β(t),且 Dβ f (t) = f′ t(t) ...
Taylor theory in quantum calculus: a general approach
Let the function β be strictly increasing and continuous on an interval I ⊂ ℝ. The β-difference operator is defined by Dβ f (t) = (f(β(t)) − f(t)/(β(t) – t), where t ≠ β(t), and Dβ f (t) = f′ t(t) ...