偏最小二乘法的惊人稳健性

João B. Assunção, Pedro Afonso Fernandes
{"title":"偏最小二乘法的惊人稳健性","authors":"João B. Assunção, Pedro Afonso Fernandes","doi":"arxiv-2409.05713","DOIUrl":null,"url":null,"abstract":"Partial least squares (PLS) is a simple factorisation method that works well\nwith high dimensional problems in which the number of observations is limited\ngiven the number of independent variables. In this article, we show that PLS\ncan perform better than ordinary least squares (OLS), least absolute shrinkage\nand selection operator (LASSO) and ridge regression in forecasting quarterly\ngross domestic product (GDP) growth, covering the period from 2000 to 2023. In\nfact, through dimension reduction, PLS proved to be effective in lowering the\nout-of-sample forecasting error, specially since 2020. For the period\n2000-2019, the four methods produce similar results, suggesting that PLS is a\nvalid regularisation technique like LASSO or ridge.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Surprising Robustness of Partial Least Squares\",\"authors\":\"João B. Assunção, Pedro Afonso Fernandes\",\"doi\":\"arxiv-2409.05713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial least squares (PLS) is a simple factorisation method that works well\\nwith high dimensional problems in which the number of observations is limited\\ngiven the number of independent variables. In this article, we show that PLS\\ncan perform better than ordinary least squares (OLS), least absolute shrinkage\\nand selection operator (LASSO) and ridge regression in forecasting quarterly\\ngross domestic product (GDP) growth, covering the period from 2000 to 2023. In\\nfact, through dimension reduction, PLS proved to be effective in lowering the\\nout-of-sample forecasting error, specially since 2020. For the period\\n2000-2019, the four methods produce similar results, suggesting that PLS is a\\nvalid regularisation technique like LASSO or ridge.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

偏最小二乘法(PLS)是一种简单的因式分解方法,能很好地解决因自变量数量有限而观测值数量有限的高维问题。本文表明,在预测 2000 年至 2023 年期间的季度国内生产总值(GDP)增长时,部分最小二乘法比普通最小二乘法(OLS)、最小绝对收缩和选择算子(LASSO)和脊回归法表现更好。事实上,通过降维,PLS 被证明能有效降低样本外预测误差,尤其是自 2020 年以来。在 2000-2019 年期间,四种方法产生了相似的结果,表明 PLS 是一种有效的正则化技术,与 LASSO 或 ridge 相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Surprising Robustness of Partial Least Squares
Partial least squares (PLS) is a simple factorisation method that works well with high dimensional problems in which the number of observations is limited given the number of independent variables. In this article, we show that PLS can perform better than ordinary least squares (OLS), least absolute shrinkage and selection operator (LASSO) and ridge regression in forecasting quarterly gross domestic product (GDP) growth, covering the period from 2000 to 2023. In fact, through dimension reduction, PLS proved to be effective in lowering the out-of-sample forecasting error, specially since 2020. For the period 2000-2019, the four methods produce similar results, suggesting that PLS is a valid regularisation technique like LASSO or ridge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信