舆论动力学动力学方程中出现的凝结模式

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
E. Calzola , G. Dimarco , G. Toscani , M. Zanella
{"title":"舆论动力学动力学方程中出现的凝结模式","authors":"E. Calzola ,&nbsp;G. Dimarco ,&nbsp;G. Toscani ,&nbsp;M. Zanella","doi":"10.1016/j.physd.2024.134356","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we define a class of models to understand the impact of population size on opinion formation dynamics, a phenomenon usually related to group conformity. To this end, we introduce a new kinetic model in which the interaction frequency is weighted by the kinetic density. In the quasi-invariant regime, this model reduces to a Kaniadakis–Quarati-type equation with nonlinear drift, originally introduced for the dynamics of bosons in a spatially homogeneous setting. From the obtained PDE for the evolution of the opinion density, we determine the regime of parameters for which a critical mass exists and triggers blow-up of the solution. Therefore, the model is capable of describing strong conformity phenomena in cases where the total density of individuals holding a given opinion exceeds a fixed critical size. In the final part, several numerical experiments demonstrate the features of the introduced class of models and the related consensus effects.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167278924003063/pdfft?md5=81e149d406cc9a5bc7fa5ed97bb4cab4&pid=1-s2.0-S0167278924003063-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Emergence of condensation patterns in kinetic equations for opinion dynamics\",\"authors\":\"E. Calzola ,&nbsp;G. Dimarco ,&nbsp;G. Toscani ,&nbsp;M. Zanella\",\"doi\":\"10.1016/j.physd.2024.134356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we define a class of models to understand the impact of population size on opinion formation dynamics, a phenomenon usually related to group conformity. To this end, we introduce a new kinetic model in which the interaction frequency is weighted by the kinetic density. In the quasi-invariant regime, this model reduces to a Kaniadakis–Quarati-type equation with nonlinear drift, originally introduced for the dynamics of bosons in a spatially homogeneous setting. From the obtained PDE for the evolution of the opinion density, we determine the regime of parameters for which a critical mass exists and triggers blow-up of the solution. Therefore, the model is capable of describing strong conformity phenomena in cases where the total density of individuals holding a given opinion exceeds a fixed critical size. In the final part, several numerical experiments demonstrate the features of the introduced class of models and the related consensus effects.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167278924003063/pdfft?md5=81e149d406cc9a5bc7fa5ed97bb4cab4&pid=1-s2.0-S0167278924003063-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924003063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们定义了一类模型,以了解群体规模对意见形成动态的影响,这种现象通常与群体一致性有关。为此,我们引入了一个新的动力学模型,在该模型中,互动频率由动力学密度加权。在准不变体系中,该模型简化为具有非线性漂移的 Kaniadakis-Quarati- 型方程,该方程最初是为空间均质环境中玻色子的动力学而引入的。根据所得到的舆论密度演化的 PDE,我们确定了存在临界质量并引发解爆炸的参数体系。因此,在持有特定观点的个体总密度超过固定临界规模的情况下,该模型能够描述强一致性现象。最后,几个数值实验证明了所引入模型的特点以及相关的共识效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emergence of condensation patterns in kinetic equations for opinion dynamics

In this work, we define a class of models to understand the impact of population size on opinion formation dynamics, a phenomenon usually related to group conformity. To this end, we introduce a new kinetic model in which the interaction frequency is weighted by the kinetic density. In the quasi-invariant regime, this model reduces to a Kaniadakis–Quarati-type equation with nonlinear drift, originally introduced for the dynamics of bosons in a spatially homogeneous setting. From the obtained PDE for the evolution of the opinion density, we determine the regime of parameters for which a critical mass exists and triggers blow-up of the solution. Therefore, the model is capable of describing strong conformity phenomena in cases where the total density of individuals holding a given opinion exceeds a fixed critical size. In the final part, several numerical experiments demonstrate the features of the introduced class of models and the related consensus effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信