{"title":"胶体量子点: 4. 胶体量子点和基本光致发光定律","authors":"V. F. Razumov, S. A. Tovstun","doi":"10.1134/s0018143924700206","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A brief review of the well-known laws and rules of photoluminescence is given, and it is shown that these laws usually do not hold for CQD solutions. It has been shown that this is due to a special mechanism for the formation of the luminescent properties of CQDs. The derivation of a new universal law of photoluminescence, applicable to any type of luminophores, which has recently been substantiated theoretically and verified experimentally using the example of CQDs, is presented.</p>","PeriodicalId":12893,"journal":{"name":"High Energy Chemistry","volume":"18 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colloidal Quantum Dots: 4. Colloidal Quantum Dots and Basic Photoluminescence Laws\",\"authors\":\"V. F. Razumov, S. A. Tovstun\",\"doi\":\"10.1134/s0018143924700206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A brief review of the well-known laws and rules of photoluminescence is given, and it is shown that these laws usually do not hold for CQD solutions. It has been shown that this is due to a special mechanism for the formation of the luminescent properties of CQDs. The derivation of a new universal law of photoluminescence, applicable to any type of luminophores, which has recently been substantiated theoretically and verified experimentally using the example of CQDs, is presented.</p>\",\"PeriodicalId\":12893,\"journal\":{\"name\":\"High Energy Chemistry\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1134/s0018143924700206\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s0018143924700206","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A brief review of the well-known laws and rules of photoluminescence is given, and it is shown that these laws usually do not hold for CQD solutions. It has been shown that this is due to a special mechanism for the formation of the luminescent properties of CQDs. The derivation of a new universal law of photoluminescence, applicable to any type of luminophores, which has recently been substantiated theoretically and verified experimentally using the example of CQDs, is presented.
期刊介绍:
High Energy Chemistry publishes original articles, reviews, and short communications on molecular and supramolecular photochemistry, photobiology, radiation chemistry, plasma chemistry, chemistry of nanosized systems, chemistry of new atoms, processes and materials for optical information systems and other areas of high energy chemistry. It publishes theoretical and experimental studies in all areas of high energy chemistry, such as the interaction of high-energy particles with matter, the nature and reactivity of short-lived species induced by the action of particle and electromagnetic radiation or hot atoms on substances in their gaseous and condensed states, and chemical processes initiated in organic and inorganic systems by high-energy radiation.