WirelessAgent:用于智能无线网络的大型语言模型代理

Jingwen Tong, Jiawei Shao, Qiong Wu, Wei Guo, Zijian Li, Zehong Lin, Jun Zhang
{"title":"WirelessAgent:用于智能无线网络的大型语言模型代理","authors":"Jingwen Tong, Jiawei Shao, Qiong Wu, Wei Guo, Zijian Li, Zehong Lin, Jun Zhang","doi":"arxiv-2409.07964","DOIUrl":null,"url":null,"abstract":"Wireless networks are increasingly facing challenges due to their expanding\nscale and complexity. These challenges underscore the need for advanced\nAI-driven strategies, particularly in the upcoming 6G networks. In this\narticle, we introduce WirelessAgent, a novel approach leveraging large language\nmodels (LLMs) to develop AI agents capable of managing complex tasks in\nwireless networks. It can effectively improve network performance through\nadvanced reasoning, multimodal data processing, and autonomous decision making.\nThereafter, we demonstrate the practical applicability and benefits of\nWirelessAgent for network slicing management. The experimental results show\nthat WirelessAgent is capable of accurately understanding user intent,\neffectively allocating slice resources, and consistently maintaining optimal\nperformance.","PeriodicalId":501280,"journal":{"name":"arXiv - CS - Networking and Internet Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WirelessAgent: Large Language Model Agents for Intelligent Wireless Networks\",\"authors\":\"Jingwen Tong, Jiawei Shao, Qiong Wu, Wei Guo, Zijian Li, Zehong Lin, Jun Zhang\",\"doi\":\"arxiv-2409.07964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless networks are increasingly facing challenges due to their expanding\\nscale and complexity. These challenges underscore the need for advanced\\nAI-driven strategies, particularly in the upcoming 6G networks. In this\\narticle, we introduce WirelessAgent, a novel approach leveraging large language\\nmodels (LLMs) to develop AI agents capable of managing complex tasks in\\nwireless networks. It can effectively improve network performance through\\nadvanced reasoning, multimodal data processing, and autonomous decision making.\\nThereafter, we demonstrate the practical applicability and benefits of\\nWirelessAgent for network slicing management. The experimental results show\\nthat WirelessAgent is capable of accurately understanding user intent,\\neffectively allocating slice resources, and consistently maintaining optimal\\nperformance.\",\"PeriodicalId\":501280,\"journal\":{\"name\":\"arXiv - CS - Networking and Internet Architecture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Networking and Internet Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Networking and Internet Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于规模和复杂性不断扩大,无线网络正日益面临挑战。这些挑战凸显了对先进人工智能驱动战略的需求,尤其是在即将到来的 6G 网络中。本文将介绍无线代理(WirelessAgent),这是一种利用大型语言模型(LLM)开发能够管理无线网络中复杂任务的人工智能代理的新方法。它可以通过高级推理、多模态数据处理和自主决策来有效提高网络性能。随后,我们展示了 WirelessAgent 在网络切片管理中的实际应用性和优势。实验结果表明,WirelessAgent 能够准确理解用户意图,有效分配切片资源,并持续保持最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WirelessAgent: Large Language Model Agents for Intelligent Wireless Networks
Wireless networks are increasingly facing challenges due to their expanding scale and complexity. These challenges underscore the need for advanced AI-driven strategies, particularly in the upcoming 6G networks. In this article, we introduce WirelessAgent, a novel approach leveraging large language models (LLMs) to develop AI agents capable of managing complex tasks in wireless networks. It can effectively improve network performance through advanced reasoning, multimodal data processing, and autonomous decision making. Thereafter, we demonstrate the practical applicability and benefits of WirelessAgent for network slicing management. The experimental results show that WirelessAgent is capable of accurately understanding user intent, effectively allocating slice resources, and consistently maintaining optimal performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信