非地面开放式无线接入网络中的节能功能分区

S. M. Mahdi Shahabi, Xiaonan Deng, Ahmad Qidan, Taisir Elgorashi, Jaafar Elmirghani
{"title":"非地面开放式无线接入网络中的节能功能分区","authors":"S. M. Mahdi Shahabi, Xiaonan Deng, Ahmad Qidan, Taisir Elgorashi, Jaafar Elmirghani","doi":"arxiv-2409.00466","DOIUrl":null,"url":null,"abstract":"This paper investigates the integration of Open Radio Access Network (O-RAN)\nwithin non-terrestrial networks (NTN), and optimizing the dynamic functional\nsplit between Centralized Units (CU) and Distributed Units (DU) for enhanced\nenergy efficiency in the network. We introduce a novel framework utilizing a\nDeep Q-Network (DQN)-based reinforcement learning approach to dynamically find\nthe optimal RAN functional split option and the best NTN-based RAN network out\nof the available NTN-platforms according to real-time conditions, traffic\ndemands, and limited energy resources in NTN platforms. This approach supports\ncapability of adapting to various NTN-based RANs across different platforms\nsuch as LEO satellites and high-altitude platform stations (HAPS), enabling\nadaptive network reconfiguration to ensure optimal service quality and energy\nutilization. Simulation results validate the effectiveness of our method,\noffering significant improvements in energy efficiency and sustainability under\ndiverse NTN scenarios.","PeriodicalId":501280,"journal":{"name":"arXiv - CS - Networking and Internet Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-efficient Functional Split in Non-terrestrial Open Radio Access Networks\",\"authors\":\"S. M. Mahdi Shahabi, Xiaonan Deng, Ahmad Qidan, Taisir Elgorashi, Jaafar Elmirghani\",\"doi\":\"arxiv-2409.00466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the integration of Open Radio Access Network (O-RAN)\\nwithin non-terrestrial networks (NTN), and optimizing the dynamic functional\\nsplit between Centralized Units (CU) and Distributed Units (DU) for enhanced\\nenergy efficiency in the network. We introduce a novel framework utilizing a\\nDeep Q-Network (DQN)-based reinforcement learning approach to dynamically find\\nthe optimal RAN functional split option and the best NTN-based RAN network out\\nof the available NTN-platforms according to real-time conditions, traffic\\ndemands, and limited energy resources in NTN platforms. This approach supports\\ncapability of adapting to various NTN-based RANs across different platforms\\nsuch as LEO satellites and high-altitude platform stations (HAPS), enabling\\nadaptive network reconfiguration to ensure optimal service quality and energy\\nutilization. Simulation results validate the effectiveness of our method,\\noffering significant improvements in energy efficiency and sustainability under\\ndiverse NTN scenarios.\",\"PeriodicalId\":501280,\"journal\":{\"name\":\"arXiv - CS - Networking and Internet Architecture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Networking and Internet Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Networking and Internet Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在非地面网络(NTN)中集成开放无线接入网(O-RAN),并优化集中式单元(CU)和分布式单元(DU)之间的动态功能划分,以提高网络能效。我们引入了一个新颖的框架,利用基于深度 Q 网络(DQN)的强化学习方法,根据实时条件、流量需求和 NTN 平台有限的能源资源,从可用的 NTN 平台中动态找到最佳的 RAN 功能划分选项和基于 NTN 的最佳 RAN 网络。这种方法支持在低地轨道卫星和高空平台站(HAPS)等不同平台上适应各种基于NTN的RAN,实现自适应网络重新配置,以确保最佳服务质量和能源利用。仿真结果验证了我们的方法的有效性,在各种 NTN 场景下显著提高了能效和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-efficient Functional Split in Non-terrestrial Open Radio Access Networks
This paper investigates the integration of Open Radio Access Network (O-RAN) within non-terrestrial networks (NTN), and optimizing the dynamic functional split between Centralized Units (CU) and Distributed Units (DU) for enhanced energy efficiency in the network. We introduce a novel framework utilizing a Deep Q-Network (DQN)-based reinforcement learning approach to dynamically find the optimal RAN functional split option and the best NTN-based RAN network out of the available NTN-platforms according to real-time conditions, traffic demands, and limited energy resources in NTN platforms. This approach supports capability of adapting to various NTN-based RANs across different platforms such as LEO satellites and high-altitude platform stations (HAPS), enabling adaptive network reconfiguration to ensure optimal service quality and energy utilization. Simulation results validate the effectiveness of our method, offering significant improvements in energy efficiency and sustainability under diverse NTN scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信