S. M. Mahdi Shahabi, Xiaonan Deng, Ahmad Qidan, Taisir Elgorashi, Jaafar Elmirghani
{"title":"非地面开放式无线接入网络中的节能功能分区","authors":"S. M. Mahdi Shahabi, Xiaonan Deng, Ahmad Qidan, Taisir Elgorashi, Jaafar Elmirghani","doi":"arxiv-2409.00466","DOIUrl":null,"url":null,"abstract":"This paper investigates the integration of Open Radio Access Network (O-RAN)\nwithin non-terrestrial networks (NTN), and optimizing the dynamic functional\nsplit between Centralized Units (CU) and Distributed Units (DU) for enhanced\nenergy efficiency in the network. We introduce a novel framework utilizing a\nDeep Q-Network (DQN)-based reinforcement learning approach to dynamically find\nthe optimal RAN functional split option and the best NTN-based RAN network out\nof the available NTN-platforms according to real-time conditions, traffic\ndemands, and limited energy resources in NTN platforms. This approach supports\ncapability of adapting to various NTN-based RANs across different platforms\nsuch as LEO satellites and high-altitude platform stations (HAPS), enabling\nadaptive network reconfiguration to ensure optimal service quality and energy\nutilization. Simulation results validate the effectiveness of our method,\noffering significant improvements in energy efficiency and sustainability under\ndiverse NTN scenarios.","PeriodicalId":501280,"journal":{"name":"arXiv - CS - Networking and Internet Architecture","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-efficient Functional Split in Non-terrestrial Open Radio Access Networks\",\"authors\":\"S. M. Mahdi Shahabi, Xiaonan Deng, Ahmad Qidan, Taisir Elgorashi, Jaafar Elmirghani\",\"doi\":\"arxiv-2409.00466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the integration of Open Radio Access Network (O-RAN)\\nwithin non-terrestrial networks (NTN), and optimizing the dynamic functional\\nsplit between Centralized Units (CU) and Distributed Units (DU) for enhanced\\nenergy efficiency in the network. We introduce a novel framework utilizing a\\nDeep Q-Network (DQN)-based reinforcement learning approach to dynamically find\\nthe optimal RAN functional split option and the best NTN-based RAN network out\\nof the available NTN-platforms according to real-time conditions, traffic\\ndemands, and limited energy resources in NTN platforms. This approach supports\\ncapability of adapting to various NTN-based RANs across different platforms\\nsuch as LEO satellites and high-altitude platform stations (HAPS), enabling\\nadaptive network reconfiguration to ensure optimal service quality and energy\\nutilization. Simulation results validate the effectiveness of our method,\\noffering significant improvements in energy efficiency and sustainability under\\ndiverse NTN scenarios.\",\"PeriodicalId\":501280,\"journal\":{\"name\":\"arXiv - CS - Networking and Internet Architecture\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Networking and Internet Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Networking and Internet Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了在非地面网络(NTN)中集成开放无线接入网(O-RAN),并优化集中式单元(CU)和分布式单元(DU)之间的动态功能划分,以提高网络能效。我们引入了一个新颖的框架,利用基于深度 Q 网络(DQN)的强化学习方法,根据实时条件、流量需求和 NTN 平台有限的能源资源,从可用的 NTN 平台中动态找到最佳的 RAN 功能划分选项和基于 NTN 的最佳 RAN 网络。这种方法支持在低地轨道卫星和高空平台站(HAPS)等不同平台上适应各种基于NTN的RAN,实现自适应网络重新配置,以确保最佳服务质量和能源利用。仿真结果验证了我们的方法的有效性,在各种 NTN 场景下显著提高了能效和可持续性。
Energy-efficient Functional Split in Non-terrestrial Open Radio Access Networks
This paper investigates the integration of Open Radio Access Network (O-RAN)
within non-terrestrial networks (NTN), and optimizing the dynamic functional
split between Centralized Units (CU) and Distributed Units (DU) for enhanced
energy efficiency in the network. We introduce a novel framework utilizing a
Deep Q-Network (DQN)-based reinforcement learning approach to dynamically find
the optimal RAN functional split option and the best NTN-based RAN network out
of the available NTN-platforms according to real-time conditions, traffic
demands, and limited energy resources in NTN platforms. This approach supports
capability of adapting to various NTN-based RANs across different platforms
such as LEO satellites and high-altitude platform stations (HAPS), enabling
adaptive network reconfiguration to ensure optimal service quality and energy
utilization. Simulation results validate the effectiveness of our method,
offering significant improvements in energy efficiency and sustainability under
diverse NTN scenarios.