阿尔廷-施莱尔扩展与亨塞尔有价域的组合复杂性

BLAISE BOISSONNEAU
{"title":"阿尔廷-施莱尔扩展与亨塞尔有价域的组合复杂性","authors":"BLAISE BOISSONNEAU","doi":"10.1017/jsl.2024.34","DOIUrl":null,"url":null,"abstract":"<p>We give explicit formulas witnessing IP, IP<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911114232841-0471:S0022481224000343:S0022481224000343_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$_{\\!n}$</span></span></img></span></span>, or TP2 in fields with Artin–Schreier extensions. We use them to control <span>p</span>-extensions of mixed characteristic henselian valued fields, allowing us most notably to generalize to the NIP<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911114232841-0471:S0022481224000343:S0022481224000343_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$_{\\!n}$</span></span></img></span></span> context one way of Anscombe–Jahnke’s classification of NIP henselian valued fields. As a corollary, we obtain that NIP<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911114232841-0471:S0022481224000343:S0022481224000343_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$_{\\!n}$</span></span></img></span></span> henselian valued fields with NIP residue field are NIP. We also discuss tameness results for NTP2 henselian valued fields.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ARTIN–SCHREIER EXTENSIONS AND COMBINATORIAL COMPLEXITY IN HENSELIAN VALUED FIELDS\",\"authors\":\"BLAISE BOISSONNEAU\",\"doi\":\"10.1017/jsl.2024.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give explicit formulas witnessing IP, IP<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911114232841-0471:S0022481224000343:S0022481224000343_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$_{\\\\!n}$</span></span></img></span></span>, or TP2 in fields with Artin–Schreier extensions. We use them to control <span>p</span>-extensions of mixed characteristic henselian valued fields, allowing us most notably to generalize to the NIP<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911114232841-0471:S0022481224000343:S0022481224000343_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$_{\\\\!n}$</span></span></img></span></span> context one way of Anscombe–Jahnke’s classification of NIP henselian valued fields. As a corollary, we obtain that NIP<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911114232841-0471:S0022481224000343:S0022481224000343_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$_{\\\\!n}$</span></span></img></span></span> henselian valued fields with NIP residue field are NIP. We also discuss tameness results for NTP2 henselian valued fields.</p>\",\"PeriodicalId\":501300,\"journal\":{\"name\":\"The Journal of Symbolic Logic\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2024.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2024.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了在具有阿尔廷-施赖尔扩展的域中见证 IP、IP$_{\!n}$ 或 TP2 的明确公式。我们用它们来控制混合特征亨氏有价域的 p 扩展,这使我们得以将安斯康伯-雅克对 NIP 亨氏有价域的一种分类方法推广到 NIP$_{\!n}$ 范畴。作为推论,我们得到具有 NIP 残差域的 NIP$_{\!n}$ henselian 有价域是 NIP 的。我们还讨论了 NTP2 henselian 有价域的驯化结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ARTIN–SCHREIER EXTENSIONS AND COMBINATORIAL COMPLEXITY IN HENSELIAN VALUED FIELDS

We give explicit formulas witnessing IP, IP$_{\!n}$, or TP2 in fields with Artin–Schreier extensions. We use them to control p-extensions of mixed characteristic henselian valued fields, allowing us most notably to generalize to the NIP$_{\!n}$ context one way of Anscombe–Jahnke’s classification of NIP henselian valued fields. As a corollary, we obtain that NIP$_{\!n}$ henselian valued fields with NIP residue field are NIP. We also discuss tameness results for NTP2 henselian valued fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信