{"title":"不同权重初始化策略对植物病害检测迁移学习的影响","authors":"Duygu Sinanc Terzi","doi":"10.1111/ppa.13997","DOIUrl":null,"url":null,"abstract":"The weight initialization technique for transfer learning refers to the practice of using pretrained models that can be modified to solve new problems, instead of starting the training process from scratch. In this study, six different transfer learning weight initialization strategies were proposed for plant disease detection: scratch (i.e., random initialization), pretrained model on cross‐domain (ImageNet), model trained on related domain (ISIC 2019), model trained on related domain (ISIC 2019) with cross‐domain (ImageNet) weights, model trained on same domain (PlantVillage), and model trained on same domain (PlantVillage) with cross‐domain weights (ImageNet). Weights from each strategy were transferred to a target dataset (Plant Pathology 2021). These strategies were implemented using eight deep learning architectures. It was observed that transferring from any strategy led to an average acceleration of convergence ranging from 33.88% to 73.16% in mean loss and an improvement of 8.72%–42.12% in mean F<jats:sub>1</jats:sub>‐score compared to the scratch strategy. Moreover, although smaller and less comprehensive than ImageNet, transferring information from the same domain or related domain proved to be competitive compared to transferring from ImageNet. This indicates that ImageNet, which is widely favoured in the literature, may not necessarily represent the most optimal transfer source for the given context. In addition, to identify which strategies have significant differences, a post hoc analysis using Tukey's HSD test was conducted. Finally, the classifications made by the proposed models were visualized using Grad‐CAM to provide a qualitative understanding of how different weight initialization strategies affect the focus areas of the models.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"40 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of different weight initialization strategies on transfer learning for plant disease detection\",\"authors\":\"Duygu Sinanc Terzi\",\"doi\":\"10.1111/ppa.13997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The weight initialization technique for transfer learning refers to the practice of using pretrained models that can be modified to solve new problems, instead of starting the training process from scratch. In this study, six different transfer learning weight initialization strategies were proposed for plant disease detection: scratch (i.e., random initialization), pretrained model on cross‐domain (ImageNet), model trained on related domain (ISIC 2019), model trained on related domain (ISIC 2019) with cross‐domain (ImageNet) weights, model trained on same domain (PlantVillage), and model trained on same domain (PlantVillage) with cross‐domain weights (ImageNet). Weights from each strategy were transferred to a target dataset (Plant Pathology 2021). These strategies were implemented using eight deep learning architectures. It was observed that transferring from any strategy led to an average acceleration of convergence ranging from 33.88% to 73.16% in mean loss and an improvement of 8.72%–42.12% in mean F<jats:sub>1</jats:sub>‐score compared to the scratch strategy. Moreover, although smaller and less comprehensive than ImageNet, transferring information from the same domain or related domain proved to be competitive compared to transferring from ImageNet. This indicates that ImageNet, which is widely favoured in the literature, may not necessarily represent the most optimal transfer source for the given context. In addition, to identify which strategies have significant differences, a post hoc analysis using Tukey's HSD test was conducted. Finally, the classifications made by the proposed models were visualized using Grad‐CAM to provide a qualitative understanding of how different weight initialization strategies affect the focus areas of the models.\",\"PeriodicalId\":20075,\"journal\":{\"name\":\"Plant Pathology\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/ppa.13997\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/ppa.13997","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Effect of different weight initialization strategies on transfer learning for plant disease detection
The weight initialization technique for transfer learning refers to the practice of using pretrained models that can be modified to solve new problems, instead of starting the training process from scratch. In this study, six different transfer learning weight initialization strategies were proposed for plant disease detection: scratch (i.e., random initialization), pretrained model on cross‐domain (ImageNet), model trained on related domain (ISIC 2019), model trained on related domain (ISIC 2019) with cross‐domain (ImageNet) weights, model trained on same domain (PlantVillage), and model trained on same domain (PlantVillage) with cross‐domain weights (ImageNet). Weights from each strategy were transferred to a target dataset (Plant Pathology 2021). These strategies were implemented using eight deep learning architectures. It was observed that transferring from any strategy led to an average acceleration of convergence ranging from 33.88% to 73.16% in mean loss and an improvement of 8.72%–42.12% in mean F1‐score compared to the scratch strategy. Moreover, although smaller and less comprehensive than ImageNet, transferring information from the same domain or related domain proved to be competitive compared to transferring from ImageNet. This indicates that ImageNet, which is widely favoured in the literature, may not necessarily represent the most optimal transfer source for the given context. In addition, to identify which strategies have significant differences, a post hoc analysis using Tukey's HSD test was conducted. Finally, the classifications made by the proposed models were visualized using Grad‐CAM to provide a qualitative understanding of how different weight initialization strategies affect the focus areas of the models.
期刊介绍:
This international journal, owned and edited by the British Society for Plant Pathology, covers all aspects of plant pathology and reaches subscribers in 80 countries. Top quality original research papers and critical reviews from around the world cover: diseases of temperate and tropical plants caused by fungi, bacteria, viruses, phytoplasmas and nematodes; physiological, biochemical, molecular, ecological, genetic and economic aspects of plant pathology; disease epidemiology and modelling; disease appraisal and crop loss assessment; and plant disease control and disease-related crop management.