VQ-DeepVSC:用于视频语义通信的双级矢量量化框架

Yongyi Miao, Zhongdang Li, Yang Wang, Die Hu, Jun Yan, Youfang Wang
{"title":"VQ-DeepVSC:用于视频语义通信的双级矢量量化框架","authors":"Yongyi Miao, Zhongdang Li, Yang Wang, Die Hu, Jun Yan, Youfang Wang","doi":"arxiv-2409.03393","DOIUrl":null,"url":null,"abstract":"In response to the rapid growth of global videomtraffic and the limitations\nof traditional wireless transmission systems, we propose a novel dual-stage\nvector quantization framework, VQ-DeepVSC, tailored to enhance video\ntransmission over wireless channels. In the first stage, we design the adaptive\nkeyframe extractor and interpolator, deployed respectively at the transmitter\nand receiver, which intelligently select key frames to minimize inter-frame\nredundancy and mitigate the cliff-effect under challenging channel conditions.\nIn the second stage, we propose the semantic vector quantization encoder and\ndecoder, placed respectively at the transmitter and receiver, which efficiently\ncompress key frames using advanced indexing and spatial normalization modules\nto reduce redundancy. Additionally, we propose adjustable index selection and\nrecovery modules, enhancing compression efficiency and enabling flexible\ncompression ratio adjustment. Compared to the joint source-channel coding\n(JSCC) framework, the proposed framework exhibits superior compatibility with\ncurrent digital communication systems. Experimental results demonstrate that\nVQ-DeepVSC achieves substantial improvements in both Multi-Scale Structural\nSimilarity (MS-SSIM) and Learned Perceptual Image Patch Similarity (LPIPS)\nmetrics than the H.265 standard, particularly under low channel signal-to-noise\nratio (SNR) or multi-path channels, highlighting the significantly enhanced\ntransmission capabilities of our approach.","PeriodicalId":501280,"journal":{"name":"arXiv - CS - Networking and Internet Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VQ-DeepVSC: A Dual-Stage Vector Quantization Framework for Video Semantic Communication\",\"authors\":\"Yongyi Miao, Zhongdang Li, Yang Wang, Die Hu, Jun Yan, Youfang Wang\",\"doi\":\"arxiv-2409.03393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In response to the rapid growth of global videomtraffic and the limitations\\nof traditional wireless transmission systems, we propose a novel dual-stage\\nvector quantization framework, VQ-DeepVSC, tailored to enhance video\\ntransmission over wireless channels. In the first stage, we design the adaptive\\nkeyframe extractor and interpolator, deployed respectively at the transmitter\\nand receiver, which intelligently select key frames to minimize inter-frame\\nredundancy and mitigate the cliff-effect under challenging channel conditions.\\nIn the second stage, we propose the semantic vector quantization encoder and\\ndecoder, placed respectively at the transmitter and receiver, which efficiently\\ncompress key frames using advanced indexing and spatial normalization modules\\nto reduce redundancy. Additionally, we propose adjustable index selection and\\nrecovery modules, enhancing compression efficiency and enabling flexible\\ncompression ratio adjustment. Compared to the joint source-channel coding\\n(JSCC) framework, the proposed framework exhibits superior compatibility with\\ncurrent digital communication systems. Experimental results demonstrate that\\nVQ-DeepVSC achieves substantial improvements in both Multi-Scale Structural\\nSimilarity (MS-SSIM) and Learned Perceptual Image Patch Similarity (LPIPS)\\nmetrics than the H.265 standard, particularly under low channel signal-to-noise\\nratio (SNR) or multi-path channels, highlighting the significantly enhanced\\ntransmission capabilities of our approach.\",\"PeriodicalId\":501280,\"journal\":{\"name\":\"arXiv - CS - Networking and Internet Architecture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Networking and Internet Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Networking and Internet Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对全球视频流量的快速增长和传统无线传输系统的局限性,我们提出了一种新颖的双阶段矢量量化框架 VQ-DeepVSC,专门用于增强无线信道上的视频传输。在第一阶段,我们设计了自适应关键帧提取器和内插器,分别部署在发射器和接收器上,可智能地选择关键帧,以最大限度地减少帧间冗余,并缓解具有挑战性的信道条件下的悬崖效应。在第二阶段,我们提出了语义矢量量化编码器和解码器,分别部署在发射器和接收器上,利用先进的索引和空间归一化模块有效地压缩关键帧,以减少冗余。此外,我们还提出了可调整的索引选择和恢复模块,提高了压缩效率,并实现了灵活的压缩比调整。与联合信源信道编码(JSCC)框架相比,所提出的框架与当前的数字通信系统具有更好的兼容性。实验结果表明,与H.265标准相比,VQ-DeepVSC在多尺度结构相似性(MS-SSIM)和学习感知图像补丁相似性(LPIPS)指标上都取得了大幅改进,尤其是在低信道信噪比(SNR)或多路径信道条件下,这凸显了我们的方法显著增强的传输能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VQ-DeepVSC: A Dual-Stage Vector Quantization Framework for Video Semantic Communication
In response to the rapid growth of global videomtraffic and the limitations of traditional wireless transmission systems, we propose a novel dual-stage vector quantization framework, VQ-DeepVSC, tailored to enhance video transmission over wireless channels. In the first stage, we design the adaptive keyframe extractor and interpolator, deployed respectively at the transmitter and receiver, which intelligently select key frames to minimize inter-frame redundancy and mitigate the cliff-effect under challenging channel conditions. In the second stage, we propose the semantic vector quantization encoder and decoder, placed respectively at the transmitter and receiver, which efficiently compress key frames using advanced indexing and spatial normalization modules to reduce redundancy. Additionally, we propose adjustable index selection and recovery modules, enhancing compression efficiency and enabling flexible compression ratio adjustment. Compared to the joint source-channel coding (JSCC) framework, the proposed framework exhibits superior compatibility with current digital communication systems. Experimental results demonstrate that VQ-DeepVSC achieves substantial improvements in both Multi-Scale Structural Similarity (MS-SSIM) and Learned Perceptual Image Patch Similarity (LPIPS) metrics than the H.265 standard, particularly under low channel signal-to-noise ratio (SNR) or multi-path channels, highlighting the significantly enhanced transmission capabilities of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信