{"title":"利用小波神经网络对航空光纤极化状态变化进行天气适应性多步骤预测","authors":"Khouloud Abdelli, Matteo Lonardi, Jurgen Gripp, Samuel Olsson Fabien Boitier, Patricia Layec","doi":"arxiv-2409.03663","DOIUrl":null,"url":null,"abstract":"We introduce a novel weather-adaptive approach for multi-step forecasting of\nmulti-scale SOP changes in aerial fiber links. By harnessing the discrete\nwavelet transform and incorporating weather data, our approach improves\nforecasting accuracy by over 65% in RMSE and 63% in MAPE compared to baselines.","PeriodicalId":501280,"journal":{"name":"arXiv - CS - Networking and Internet Architecture","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weather-Adaptive Multi-Step Forecasting of State of Polarization Changes in Aerial Fibers Using Wavelet Neural Networks\",\"authors\":\"Khouloud Abdelli, Matteo Lonardi, Jurgen Gripp, Samuel Olsson Fabien Boitier, Patricia Layec\",\"doi\":\"arxiv-2409.03663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel weather-adaptive approach for multi-step forecasting of\\nmulti-scale SOP changes in aerial fiber links. By harnessing the discrete\\nwavelet transform and incorporating weather data, our approach improves\\nforecasting accuracy by over 65% in RMSE and 63% in MAPE compared to baselines.\",\"PeriodicalId\":501280,\"journal\":{\"name\":\"arXiv - CS - Networking and Internet Architecture\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Networking and Internet Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Networking and Internet Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weather-Adaptive Multi-Step Forecasting of State of Polarization Changes in Aerial Fibers Using Wavelet Neural Networks
We introduce a novel weather-adaptive approach for multi-step forecasting of
multi-scale SOP changes in aerial fiber links. By harnessing the discrete
wavelet transform and incorporating weather data, our approach improves
forecasting accuracy by over 65% in RMSE and 63% in MAPE compared to baselines.