在 O-RAN 中建立人工智能/ML 驱动的 SMO 框架:场景、解决方案和挑战

Mohammad Asif Habibi, Bin Han, Merve Saimler, Ignacio Labrador Pavon, Hans D. Schotten
{"title":"在 O-RAN 中建立人工智能/ML 驱动的 SMO 框架:场景、解决方案和挑战","authors":"Mohammad Asif Habibi, Bin Han, Merve Saimler, Ignacio Labrador Pavon, Hans D. Schotten","doi":"arxiv-2409.05092","DOIUrl":null,"url":null,"abstract":"The emergence of the open radio access network (O-RAN) architecture offers a\nparadigm shift in cellular network management and service orchestration,\nleveraging data-driven, intent-based, autonomous, and intelligent solutions.\nWithin O-RAN, the service management and orchestration (SMO) framework plays a\npivotal role in managing network functions (NFs), resource allocation, service\nprovisioning, and others. However, the increasing complexity and scale of\nO-RANs demand autonomous and intelligent models for optimizing SMO operations.\nTo achieve this goal, it is essential to integrate intelligence and automation\ninto the operations of SMO. In this manuscript, we propose three scenarios for\nintegrating machine learning (ML) algorithms into SMO. We then focus on\nexploring one of the scenarios in which the non-real-time RAN intelligence\ncontroller (Non-RT RIC) plays a major role in data collection, as well as model\ntraining, deployment, and refinement, by proposing a centralized ML\narchitecture. Finally, we identify potential challenges associated with\nimplementing a centralized ML solution within SMO.","PeriodicalId":501280,"journal":{"name":"arXiv - CS - Networking and Internet Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards an AI/ML-driven SMO Framework in O-RAN: Scenarios, Solutions, and Challenges\",\"authors\":\"Mohammad Asif Habibi, Bin Han, Merve Saimler, Ignacio Labrador Pavon, Hans D. Schotten\",\"doi\":\"arxiv-2409.05092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of the open radio access network (O-RAN) architecture offers a\\nparadigm shift in cellular network management and service orchestration,\\nleveraging data-driven, intent-based, autonomous, and intelligent solutions.\\nWithin O-RAN, the service management and orchestration (SMO) framework plays a\\npivotal role in managing network functions (NFs), resource allocation, service\\nprovisioning, and others. However, the increasing complexity and scale of\\nO-RANs demand autonomous and intelligent models for optimizing SMO operations.\\nTo achieve this goal, it is essential to integrate intelligence and automation\\ninto the operations of SMO. In this manuscript, we propose three scenarios for\\nintegrating machine learning (ML) algorithms into SMO. We then focus on\\nexploring one of the scenarios in which the non-real-time RAN intelligence\\ncontroller (Non-RT RIC) plays a major role in data collection, as well as model\\ntraining, deployment, and refinement, by proposing a centralized ML\\narchitecture. Finally, we identify potential challenges associated with\\nimplementing a centralized ML solution within SMO.\",\"PeriodicalId\":501280,\"journal\":{\"name\":\"arXiv - CS - Networking and Internet Architecture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Networking and Internet Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Networking and Internet Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开放式无线接入网(O-RAN)架构的出现为蜂窝网络管理和服务协调提供了一个范式转变,它利用了数据驱动、基于意图、自主和智能的解决方案。在 O-RAN 中,服务管理和协调(SMO)框架在管理网络功能(NF)、资源分配、服务供应等方面发挥着关键作用。然而,O-RAN 的复杂性和规模不断扩大,需要自主和智能的模型来优化 SMO 的运营。在本手稿中,我们提出了将机器学习(ML)算法集成到 SMO 中的三种方案。然后,我们通过提出一种集中式 ML 架构,重点探索了其中一种方案,在这种方案中,非实时 RAN 智能控制器(Non-RT RIC)在数据收集以及模型训练、部署和完善方面发挥了重要作用。最后,我们确定了在 SMO 中实施集中式 ML 解决方案可能面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards an AI/ML-driven SMO Framework in O-RAN: Scenarios, Solutions, and Challenges
The emergence of the open radio access network (O-RAN) architecture offers a paradigm shift in cellular network management and service orchestration, leveraging data-driven, intent-based, autonomous, and intelligent solutions. Within O-RAN, the service management and orchestration (SMO) framework plays a pivotal role in managing network functions (NFs), resource allocation, service provisioning, and others. However, the increasing complexity and scale of O-RANs demand autonomous and intelligent models for optimizing SMO operations. To achieve this goal, it is essential to integrate intelligence and automation into the operations of SMO. In this manuscript, we propose three scenarios for integrating machine learning (ML) algorithms into SMO. We then focus on exploring one of the scenarios in which the non-real-time RAN intelligence controller (Non-RT RIC) plays a major role in data collection, as well as model training, deployment, and refinement, by proposing a centralized ML architecture. Finally, we identify potential challenges associated with implementing a centralized ML solution within SMO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信