多孔介质中混合状态流体流动的混合有限元近似方法

IF 0.7 4区 数学 Q3 MATHEMATICS, APPLIED
J. Cummings, M. Hamilton, T. Kieu
{"title":"多孔介质中混合状态流体流动的混合有限元近似方法","authors":"J. Cummings, M. Hamilton, T. Kieu","doi":"10.1134/s096554252470074x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we consider the complex flows when all three regimes pre-Darcy, Darcy and post-Darcy may be present in different portions of a same domain. We unify all three flow regimes under mathematics formulation. We describe the flow of a single-phase fluid in <span>\\({{\\mathbb{R}}^{d}},\\;d \\geqslant 2\\)</span> by a nonlinear degenerate system of density and momentum. A mixed finite element method is proposed for the approximation of the solution of the above system. The stabilit1y of the approximations are proved; the error estimates are derived for the numerical approximations for both continuous and discrete time procedures. The continuous dependence of numerical solutions on physical parameters are demonstrated. Experimental studies are presented regarding convergence rates and showing the dependence of the solution on the physical parameters.</p>","PeriodicalId":55230,"journal":{"name":"Computational Mathematics and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mixed Finite Element Approximation for Fluid Flows of Mixed Regimes in Porous Media\",\"authors\":\"J. Cummings, M. Hamilton, T. Kieu\",\"doi\":\"10.1134/s096554252470074x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In this paper, we consider the complex flows when all three regimes pre-Darcy, Darcy and post-Darcy may be present in different portions of a same domain. We unify all three flow regimes under mathematics formulation. We describe the flow of a single-phase fluid in <span>\\\\({{\\\\mathbb{R}}^{d}},\\\\;d \\\\geqslant 2\\\\)</span> by a nonlinear degenerate system of density and momentum. A mixed finite element method is proposed for the approximation of the solution of the above system. The stabilit1y of the approximations are proved; the error estimates are derived for the numerical approximations for both continuous and discrete time procedures. The continuous dependence of numerical solutions on physical parameters are demonstrated. Experimental studies are presented regarding convergence rates and showing the dependence of the solution on the physical parameters.</p>\",\"PeriodicalId\":55230,\"journal\":{\"name\":\"Computational Mathematics and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s096554252470074x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mathematics and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s096554252470074x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在本文中,我们考虑了在同一领域的不同部分可能存在达西前、达西和达西后三种状态时的复杂流动。我们将这三种流动状态统一到数学公式中。我们通过密度和动量的非线性退化系统来描述单相流体在 \({{\mathbb{R}}^{d}},\;d \geqslant 2\) 中的流动。为近似求解上述系统,提出了一种混合有限元方法。证明了近似的稳定性;推导了连续和离散时间程序数值近似的误差估计。证明了数值解对物理参数的连续依赖性。介绍了关于收敛速率的实验研究,并显示了解对物理参数的依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mixed Finite Element Approximation for Fluid Flows of Mixed Regimes in Porous Media

Abstract

In this paper, we consider the complex flows when all three regimes pre-Darcy, Darcy and post-Darcy may be present in different portions of a same domain. We unify all three flow regimes under mathematics formulation. We describe the flow of a single-phase fluid in \({{\mathbb{R}}^{d}},\;d \geqslant 2\) by a nonlinear degenerate system of density and momentum. A mixed finite element method is proposed for the approximation of the solution of the above system. The stabilit1y of the approximations are proved; the error estimates are derived for the numerical approximations for both continuous and discrete time procedures. The continuous dependence of numerical solutions on physical parameters are demonstrated. Experimental studies are presented regarding convergence rates and showing the dependence of the solution on the physical parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Mathematics and Mathematical Physics
Computational Mathematics and Mathematical Physics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.50
自引率
14.30%
发文量
125
审稿时长
4-8 weeks
期刊介绍: Computational Mathematics and Mathematical Physics is a monthly journal published in collaboration with the Russian Academy of Sciences. The journal includes reviews and original papers on computational mathematics, computational methods of mathematical physics, informatics, and other mathematical sciences. The journal welcomes reviews and original articles from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信