论离散势理论中确定拉普拉斯方程网格基本解的唯一性

IF 0.7 4区 数学 Q3 MATHEMATICS, APPLIED
I. E. Stepanova, I. I. Kolotov, A. G. Yagola, A. N. Levashov
{"title":"论离散势理论中确定拉普拉斯方程网格基本解的唯一性","authors":"I. E. Stepanova, I. I. Kolotov, A. G. Yagola, A. N. Levashov","doi":"10.1134/s0965542524700696","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper examines the problem of unique determination of the fundamental solution of a mesh analogue of Laplace’s equation within the theory of discrete gravitational potential. The mesh fundamental solution of the finite-difference analogue of Laplace’s equation plays a key role in reconstructing a continuously distributed source of gravitational or magnetic field from heterogeneous and different-precision data obtained at points of a certain mesh set.</p>","PeriodicalId":55230,"journal":{"name":"Computational Mathematics and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Uniqueness of Determining the Mesh Fundamental Solution of Laplace’s Equation in the Theory of Discrete Potential\",\"authors\":\"I. E. Stepanova, I. I. Kolotov, A. G. Yagola, A. N. Levashov\",\"doi\":\"10.1134/s0965542524700696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The paper examines the problem of unique determination of the fundamental solution of a mesh analogue of Laplace’s equation within the theory of discrete gravitational potential. The mesh fundamental solution of the finite-difference analogue of Laplace’s equation plays a key role in reconstructing a continuously distributed source of gravitational or magnetic field from heterogeneous and different-precision data obtained at points of a certain mesh set.</p>\",\"PeriodicalId\":55230,\"journal\":{\"name\":\"Computational Mathematics and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524700696\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mathematics and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700696","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文研究了离散重力势理论中拉普拉斯方程网格模拟基本解的唯一确定问题。拉普拉斯方程的有限差分模拟的网格基本解在从某一网格集各点获得的异质和不同精度的数据重建连续分布的引力场或磁场源方面起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Uniqueness of Determining the Mesh Fundamental Solution of Laplace’s Equation in the Theory of Discrete Potential

Abstract

The paper examines the problem of unique determination of the fundamental solution of a mesh analogue of Laplace’s equation within the theory of discrete gravitational potential. The mesh fundamental solution of the finite-difference analogue of Laplace’s equation plays a key role in reconstructing a continuously distributed source of gravitational or magnetic field from heterogeneous and different-precision data obtained at points of a certain mesh set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Mathematics and Mathematical Physics
Computational Mathematics and Mathematical Physics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.50
自引率
14.30%
发文量
125
审稿时长
4-8 weeks
期刊介绍: Computational Mathematics and Mathematical Physics is a monthly journal published in collaboration with the Russian Academy of Sciences. The journal includes reviews and original papers on computational mathematics, computational methods of mathematical physics, informatics, and other mathematical sciences. The journal welcomes reviews and original articles from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信