用于快速稳健相位检索的结构化随机模型

Zhiyuan Hu, Julián Tachella, Michael Unser, Jonathan Dong
{"title":"用于快速稳健相位检索的结构化随机模型","authors":"Zhiyuan Hu, Julián Tachella, Michael Unser, Jonathan Dong","doi":"arxiv-2409.05734","DOIUrl":null,"url":null,"abstract":"Phase retrieval, a nonlinear problem prevalent in imaging applications, has\nbeen extensively studied using random models, some of which with i.i.d. sensing\nmatrix components. While these models offer robust reconstruction guarantees,\nthey are computationally expensive and impractical for real-world scenarios. In\ncontrast, Fourier-based models, common in applications such as ptychography and\ncoded diffraction imaging, are computationally more efficient but lack the\ntheoretical guarantees of random models. Here, we introduce structured random\nmodels for phase retrieval that combine the efficiency of fast Fourier\ntransforms with the versatility of random diagonal matrices. These models\nemulate i.i.d. random matrices at a fraction of the computational cost. Our\napproach demonstrates robust reconstructions comparable to fully random models\nusing gradient descent and spectral methods. Furthermore, we establish that a\nminimum of two structured layers is necessary to achieve these\nstructured-random properties. The proposed method is suitable for optical\nimplementation and offers an efficient and robust alternative for phase\nretrieval in practical imaging applications.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structured Random Model for Fast and Robust Phase Retrieval\",\"authors\":\"Zhiyuan Hu, Julián Tachella, Michael Unser, Jonathan Dong\",\"doi\":\"arxiv-2409.05734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase retrieval, a nonlinear problem prevalent in imaging applications, has\\nbeen extensively studied using random models, some of which with i.i.d. sensing\\nmatrix components. While these models offer robust reconstruction guarantees,\\nthey are computationally expensive and impractical for real-world scenarios. In\\ncontrast, Fourier-based models, common in applications such as ptychography and\\ncoded diffraction imaging, are computationally more efficient but lack the\\ntheoretical guarantees of random models. Here, we introduce structured random\\nmodels for phase retrieval that combine the efficiency of fast Fourier\\ntransforms with the versatility of random diagonal matrices. These models\\nemulate i.i.d. random matrices at a fraction of the computational cost. Our\\napproach demonstrates robust reconstructions comparable to fully random models\\nusing gradient descent and spectral methods. Furthermore, we establish that a\\nminimum of two structured layers is necessary to achieve these\\nstructured-random properties. The proposed method is suitable for optical\\nimplementation and offers an efficient and robust alternative for phase\\nretrieval in practical imaging applications.\",\"PeriodicalId\":501214,\"journal\":{\"name\":\"arXiv - PHYS - Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相位检索是成像应用中普遍存在的一个非线性问题,人们利用随机模型对其进行了广泛研究,其中一些随机模型具有 i.i.d. 传感矩阵组件。虽然这些模型提供了稳健的重建保证,但它们的计算成本很高,在现实世界中并不实用。相比之下,基于傅立叶的模型(常见于层析成像和编码衍射成像等应用中)计算效率更高,但缺乏随机模型的理论保证。在这里,我们介绍了用于相位检索的结构化随机模型,它结合了快速傅里叶变换的效率和随机对角矩阵的多功能性。这些模型以极低的计算成本模拟了 i.i.d. 随机矩阵。我们的方法利用梯度下降和频谱方法展示了可与完全随机模型相媲美的稳健重建。此外,我们还确定,至少需要两个结构层才能实现结构随机特性。所提出的方法适用于光学实施,为实际成像应用中的相位检索提供了一种高效、稳健的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structured Random Model for Fast and Robust Phase Retrieval
Phase retrieval, a nonlinear problem prevalent in imaging applications, has been extensively studied using random models, some of which with i.i.d. sensing matrix components. While these models offer robust reconstruction guarantees, they are computationally expensive and impractical for real-world scenarios. In contrast, Fourier-based models, common in applications such as ptychography and coded diffraction imaging, are computationally more efficient but lack the theoretical guarantees of random models. Here, we introduce structured random models for phase retrieval that combine the efficiency of fast Fourier transforms with the versatility of random diagonal matrices. These models emulate i.i.d. random matrices at a fraction of the computational cost. Our approach demonstrates robust reconstructions comparable to fully random models using gradient descent and spectral methods. Furthermore, we establish that a minimum of two structured layers is necessary to achieve these structured-random properties. The proposed method is suitable for optical implementation and offers an efficient and robust alternative for phase retrieval in practical imaging applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信